forked from venkatrn/perception
-
Notifications
You must be signed in to change notification settings - Fork 5
Running Pose Sampler
Aditya Agarwal edited this page May 28, 2020
·
14 revisions
Training a pose sampling network using the costs calculated by PERCH 2.0.
-
Follow the steps in Running-With-Docker Wiki under "Using Docker Image" to set up PERCH 2.0 and MaskRCNN with Docker.
-
Clone the sampling CNN repo:
git clone https://github.com/SBPL-Cruz/perch_pose_sampler
- Start the Docker image and mount the cloned folder to Docker at
/pose_sampler
- Run the following to make sure all Python modules are in the PYTHONPATH :
export PYTHONPATH=$PYTHONPATH:/pose_sampler/
export PYTHONPATH=$PYTHONPATH:/ros_python3_ws/src/perception/sbpl_perception/src/scripts/tools/fat_dataset
- Run the training code :
# For visualizing poses during training :
Xvfb :5 -screen 0 800x600x24 & export DISPLAY=:5; #skip this if not using the CPU version
cd /pose_sampler/utils
python train_classification.py \
--dataset /data/YCB_Video_Dataset \
--dataset_type ycb \
--dataset_annotation /data/YCB_Video_Dataset/instances_train_bbox_pose_sampler.json \
--test_dataset_annotation /data/YCB_Video_Dataset/instances_keyframe_bbox_pose_sampler.json \
--batchsize 40 --nepoch 50 --render_poses
- Run tensorboard outside Docker to visualize in the browser :
cd perch_pose_sampler/utils
tensorboard --logdir experiments