Skip to content

Commit 0c60b16

Browse files
authored
spell check and example admonition (#536)
1 parent 457fc52 commit 0c60b16

File tree

1 file changed

+10
-4
lines changed

1 file changed

+10
-4
lines changed

Diff for: lectures/lln_clt.md

+10-4
Original file line numberDiff line numberDiff line change
@@ -51,6 +51,9 @@ will converge to their population means.
5151

5252
Let's see an example of the LLN in action before we go further.
5353

54+
```{prf:example}
55+
:label: lln_ex_ber
56+
5457
Consider a [Bernoulli random variable](https://en.wikipedia.org/wiki/Bernoulli_distribution) $X$ with parameter $p$.
5558
5659
This means that $X$ takes values in $\{0,1\}$ and $\mathbb P\{X=1\} = p$.
@@ -68,6 +71,7 @@ $$
6871
\mathbb E X
6972
= 0 \cdot \mathbb P\{X=0\} + 1 \cdot \mathbb P\{X=1\} = \mathbb P\{X=1\} = p
7073
$$
74+
```
7175

7276
We can generate a draw of $X$ with `scipy.stats` (imported as `st`) as follows:
7377

@@ -369,7 +373,8 @@ The LLN fails to hold here because the assumption $\mathbb E|X| < \infty$ is vio
369373

370374
The LLN can also fail to hold when the IID assumption is violated.
371375

372-
For example, suppose that
376+
```{prf:example}
377+
:label: lln_ex_fail
373378
374379
$$
375380
X_0 \sim N(0,1)
@@ -384,6 +389,7 @@ $$
384389
$$
385390
386391
Therefore, the distribution of $\bar X_n$ is $N(0,1)$ for all $n$!
392+
```
387393

388394
Does this contradict the LLN, which says that the distribution of $\bar X_n$
389395
collapses to the single point $\mu$?
@@ -439,9 +445,9 @@ n \to \infty
439445
Here $\stackrel { d } {\to} N(0, \sigma^2)$ indicates [convergence in distribution](https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution) to a centered (i.e., zero mean) normal with standard deviation $\sigma$.
440446

441447

442-
The striking implication of the CLT is that for **any** distribution with
448+
The striking implication of the CLT is that for any distribution with
443449
finite [second moment](https://en.wikipedia.org/wiki/Moment_(mathematics)), the simple operation of adding independent
444-
copies **always** leads to a Gaussian(Normal) curve.
450+
copies always leads to a Gaussian(Normal) curve.
445451

446452

447453

@@ -599,7 +605,7 @@ $$
599605
$$
600606
601607
where $\alpha, \beta, \sigma$ are constants and $\epsilon_1, \epsilon_2,
602-
\ldots$ is IID and standard norma.
608+
\ldots$ are IID and standard normal.
603609
604610
Suppose that
605611

0 commit comments

Comments
 (0)