Skip to content

Commit

Permalink
update README (#138)
Browse files Browse the repository at this point in the history
* revise readme

* revise readme

* revise readme

* updata readme

* update readme

* update readme
  • Loading branch information
tongwwt authored May 9, 2023
1 parent 5d086c4 commit 4fb1772
Show file tree
Hide file tree
Showing 2 changed files with 33 additions and 12 deletions.
21 changes: 16 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,22 @@ The official implementation of
- 🏆 **Achieved `90.1% Top1` accuracy in ImageNet, the most accurate among open-source models**
- 🏆 **Achieved `65.5 mAP` on the COCO benchmark dataset for object detection, the only model that exceeded `65.0 mAP`**

## Related Projects
### Foundation Models
- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): A Pre-training unified architecture for generic perception for zero-shot and few-shot tasks
- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808): A generalist model for large-scale vision and vision-language tasks
- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): One-stage pre-training paradigm via maximizing multi-modal mutual information

### Autonomous Driving
- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): A cutting-edge baseline for camera-based 3D detection
- [BEVFormer v2](https://arxiv.org/abs/2211.10439): Adapting modern image backbones to Bird's-Eye-View recognition via perspective supervision

## Application in Challenges
- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): BEVFormer++ **Ranks 1st** based on InternImage
- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 achieves SOTA performance of 64.8 NDS on nuScenes Camera Only
- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage supports the baseline of the [3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3) and [OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1)


## News
- `Mar 14, 2023`: 🚀 "INTERN-2.5" is released!
- `Feb 28, 2023`: 🚀 InternImage is accepted to CVPR 2023!
Expand Down Expand Up @@ -267,11 +283,6 @@ For more details on building custom ops, please refering to [this document](http
</details>


## Related Projects
- Pre-training: [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining)
- Image-Text Retrieval, Image Captioning, and Visual Question Answering: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver)
- 3D Perception: [BEVFormer](https://github.com/fundamentalvision/BEVFormer)


## Citations

Expand Down
24 changes: 17 additions & 7 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,23 @@
- 🏆 **图像分类标杆数据集ImageNet `90.1% Top1`准确率,开源模型中准确度最高**
- 🏆 **物体检测标杆数据集COCO `65.5 mAP`,唯一超过`65 mAP`的模型**

## 相关项目
### 多模态基模型
- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): 通用感知任务预训练统一框架, 可直接处理zero-shot和few-shot任务
- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808):
用于处理图像/图文任务的通用模型
- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): 基于最大化输入和目标的互信息的单阶段预训练范式

### 自动驾驶
- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): 基于BEV的新一代纯视觉环视感知方案
- [BEVFormer v2](https://arxiv.org/abs/2211.10439): 融合BEV感知和透视图检测的两阶段检测器
## Application in Challenge
- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): 基于书生2.5 BEVFormer++取得赛道冠军
- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 在nuScenes纯视觉检测任务中取得SOTA性能(64.8 NDS)
- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage作为baseline支持了比赛
[3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3)[OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1)


## 最新进展
- 2023年3月14日: 🚀 “书生2.5”发布!
- 2023年2月28日: 🚀 InternImage 被CVPR 2023接收!
Expand Down Expand Up @@ -279,13 +296,6 @@ pip install -e .

</details>


## 相关开源项目
- 预训练:[M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining)
- 图文检索、图像描述和视觉问答: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver)
- 3D感知: [BEVFormer](https://github.com/fundamentalvision/BEVFormer)


## 引用

若“书生2.5”对您的研究工作有帮助,请参考如下bibtex对我们的工作进行引用。
Expand Down

0 comments on commit 4fb1772

Please sign in to comment.