This repository provides technical tools to analyze OHLCV data, along with several TA chart functionalities. These functions are optimized for speed and utilize numpy vectorization over built-in pandas methods when possible.
Bollinger(df=None, filename=None, interval=None, n=20, ndev=2)
: Bollinger BandsIchimoku(df=None, filename=None, interval=None)
: Ichimoku CloudRenko(df=None, filename=None, interval=None)
: Renko Chart
atr(high, low, close, n=2)
: average true range from candlestick datacmf(df, n=2)
: Chaikin Money Flow of an OHLCV datasetdouble_smooth(src, n_slow, n_fast)
: The smoothed value of two EMAsema(src, n=2)
: exponential moving average for a list ofsrc
acrossn
periodsmacd(src, slow=25, fast=13)
: moving average convergence/divergence ofsrc
mmo(src, n=2)
: Murrey Math oscillator ofsrc
roc(src, n=2)
: rate of change ofsrc
acrossn
periodsrolling(src, n=2, fn=None, axis=1)
: rollingsum
,max
,min
,mean
, ormedian
ofsrc
acrossn
periodsrsi(src, n=2)
: relative strength index ofsrc
acrossn
periodssdev(src, n=2)
: standard deviation across n periodssma(src, n=2)
: simple moving average ofsrc
acrossn
periodstd_sequential(src, n=2)
: TD sequential ofsrc
acrossn
periodstsi(src, slow=25, fast=13)
: true strength indicator
area_between(line1, line2)
: find the area between line1 and line2crossover(x1, x2)
: find all instances of intersections between two linesdraw_candlesticks(ax, df)
: add candlestick visuals to a matplotlib chartfill_values(averages, interval, target_len)
: Fill missing values with evenly spaced samples.- Example: You're using 15-min candlestick data to find the 1-hour moving average and want a value at every 15-min mark, and not every 1-hour mark.
group_candles(df, interval=4)
: combine candles so instead of needing a different dataset for each time interval, you can form time intervals using more precise data.- Example: you have 15-min candlestick data but want to test a strategy based
on 1-hour candlestick data (
interval=4
).
- Example: you have 15-min candlestick data but want to test a strategy based
on 1-hour candlestick data (
intersection(a0, a1, b0, b1)
: find the intersection coordinates between vector A and vector B
# NOTE: we are using 1-hour BTC OHLCV data from 2019.01.01 00:00:00 to 2019.12.31 23:00:00
from TAcharts.utils.ohlcv import OHLCV
df = OHLCV().btc
df.head()
date | open | high | low | close | volume | |
---|---|---|---|---|---|---|
0 | 2019-01-01 00:00:00 | 3699.95 | 3713.93 | 3697.00 | 3703.56 | 660.279771 |
1 | 2019-01-01 01:00:00 | 3703.63 | 3726.64 | 3703.34 | 3713.83 | 823.625491 |
2 | 2019-01-01 02:00:00 | 3714.19 | 3731.19 | 3707.00 | 3716.70 | 887.101362 |
3 | 2019-01-01 03:00:00 | 3716.98 | 3732.00 | 3696.14 | 3699.95 | 955.879034 |
4 | 2019-01-01 04:00:00 | 3699.96 | 3717.11 | 3698.00 | 3713.07 | 534.113945 |
from TAcharts.indicators.bollinger import Bollinger
b = Bollinger(df)
b.build(n=20, ndev=2)
b.plot()
from TAcharts.indicators.ichimoku import Ichimoku
i = Ichimoku(df)
i.build(20, 60, 120, 30)
i.plot()
from TAcharts.indicators.renko import Renko
r = Renko(df)
r.set_brick_size(auto=True, atr_interval=2)
r.build()
r.plot()
-
@args_to_dtype(dtype)
: Convert all function arguments to a specific data typefrom TAcharts.wrappers import args_to_dtype # Example: `src` is converted to a list @args_to_dtype(list) def rsi(src, n=2): pass
-
@pd_series_to_np_array
: Convert function arguments frompd.Series
tonp.array
usingpd.Series.values
. This wrapper is 10x quicker than using@args_to_dtype(np.array)
when working with Pandas series.from TAcharts.wrappers import pd_series_to_np_array # Example: `high`, `low`, and `close` are all converted into `np.array` data types @pd_series_to_np_array def atr(high, low, close, n=14): pass