Skip to content
This repository was archived by the owner on Sep 13, 2024. It is now read-only.
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 11 additions & 27 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,26 +1,18 @@
Package: muHVT
Package: HVT
Type: Package
Date: 2023-07-07
Date: 2023-10-15
Title: Constructing Hierarchical Voronoi Tessellations and Overlay
Heatmap for Data Analysis
Version: (v23.06.07)
Version: 3.0.1
Authors@R: c(
person("Zubin", "Dowlaty", email = "[email protected]", role = "aut"),
person("Shubhra", "Prakash", email = "[email protected]", role = "ctb"),
person("Sangeet Moy", "Das", email = "[email protected]", role = "ctb"),
person("Sunuganty Achyut", "Raj", email = "[email protected]", role = "ctb"),
person("Shantanu", "Vaidya", email = "[email protected]", role = "ctb"),
person("Somya", "Shambhawi", email = "[email protected]", role = "ctb")
person("Praditi", "Shah", email = "[email protected]", role = "ctb"),
person("Avinash", "Joshi", email = "[email protected]", role = "ctb"),
person("Meet", "Dave", email = "[email protected]", role = "ctb"),
person("Mu Sigma, Inc.", email = "[email protected]", role = "cre"))
Description: The muHVT package is a collection of R functions to facilitate building topology preserving maps for rich multivariate data.See <https://en.wikipedia.org/wiki/Voronoi_diagram> for more information. Credits to Mu Sigma for their continuous support throughout the development of the package.
person("Zubin", "Dowlaty", email = "[email protected]", role = "aut"),
person("Mu Sigma, Inc.", email = "[email protected]", role = "cre"))
Description: The HVT package is a collection of R functions to facilitate building topology preserving maps for rich multivariate data.See <https://en.wikipedia.org/wiki/Voronoi_diagram> for more information. Credits to Mu Sigma for their continuous support throughout the development of the package.
License: Apache License 2.0
Encoding: UTF-8
Imports: MASS, deldir, grDevices, splancs, sp, conf.design, Hmisc,
stats, dplyr, purrr, magrittr, polyclip,
ggplot2, tidyr, scales, cluster, reshape2, plyr
stats, dplyr, purrr, magrittr, polyclip, ggplot2, tidyr,
scales, cluster, reshape2, plyr
Depends: R (>= 3.6.0)
BugReports: https://github.com/Mu-Sigma/muHVT/issues
URL: https://github.com/Mu-Sigma/muHVT
Expand All @@ -29,17 +21,9 @@ Suggests: knitr, rmarkdown, testthat, geozoo, kableExtra, plotly,
data.table
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2023-07-07 17:45:51 UTC; somya
Packaged: 2023-10-15 12:35:23 UTC; ponanureka
Author: Zubin Dowlaty [aut],
Shubhra Prakash [ctb],
Sangeet Moy Das [ctb],
Sunuganty Achyut Raj [ctb],
Shantanu Vaidya [ctb],
Praditi Shah [ctb],
Avinash Joshi [ctb],
Somya Shambhawi [ctb]
Meet Dave [ctb],
Mu Sigma, Inc. [cre]
Mu Sigma, Inc. [cre]
Maintainer: "Mu Sigma, Inc." <[email protected]>
Repository: CRAN
Date/Publication: 2023-07-07 20:10:03 UTC
Date/Publication: 2023-10-15 20:10:03 UTC
File renamed without changes.
Binary file added HVT_3.0.1.tar.gz
Binary file not shown.
195 changes: 94 additions & 101 deletions README.html

Large diffs are not rendered by default.

62 changes: 31 additions & 31 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,28 +1,28 @@
# muHVT: Collection of functions used to build hierarchical topology preserving maps
# HVT: Collection of functions used to build hierarchical topology preserving maps

#### Zubin Dowlaty, Shubhra Prakash, Sangeet Moy Das, Shantanu Vaidya, Praditi Shah, Srinivasan Sudarsanam, Somya Shambhawi
#### Zubin Dowlaty

#### 2023-06-07
#### 2023-10-15

<div id="TOC">

* [<span class="toc-section-number">1</span> Abstract](#abstract)
* [<span class="toc-section-number">2</span> Version History](#version-history)
* [<span class="toc-section-number">2.1</span> muHVT (v23.06.07) | What’s New?](#muhvt-(v23.06.07)-whats-new)
* [<span class="toc-section-number">2.2</span> muHVT (v22.12.06)](#muhvt-(v22.12.06))
* [<span class="toc-section-number">3</span> Installation of muHVT (v23.06.07)](#installation-of-muhvt-(v23.06.07))
* [<span class="toc-section-number">2.1</span> HVT (v23.10.15) | What’s New?](#hvt-(v23.10.15)-whats-new)
* [<span class="toc-section-number">2.2</span> HVT (v22.12.06)](#hvt-(v22.12.06))
* [<span class="toc-section-number">3</span> Installation of HVT (v23.10.15)](#installation-of-hvt-(v23.10.15))
* [<span class="toc-section-number">4</span> Vignettes](#vignettes)
* [<span class="toc-section-number">4.1</span> muHVT Vignette](#muhvt-vignette)
* [<span class="toc-section-number">4.2</span> muHVT Model Diagnostics Vignette](#muhvt-model-diagnostics-vignette)
* [<span class="toc-section-number">4.3</span> muHVT : Predicting Cells with Layers using predictLayerHVT ](#muhvt---predicting-cells-with-layers-using-predictLayerHVT)
* [<span class="toc-section-number">4.1</span> HVT Vignette](#hvt-vignette)
* [<span class="toc-section-number">4.2</span> HVT Model Diagnostics Vignette](#hvt-model-diagnostics-vignette)
* [<span class="toc-section-number">4.3</span> HVT : Predicting Cells with Layers using predictLayerHVT ](#hvt---predicting-cells-with-layers-using-predictLayerHVT)

</div>

<div id="abstract" class="section level1" number="1">

# <span class="header-section-number">1</span> Abstract

The muHVT package is a collection of R functions to facilitate building [topology preserving maps](https://users.ics.aalto.fi/jhollmen/dippa/node9.html#:~:text=The%20property%20of%20topology%20preserving,tool%20of%20high%2Ddimensional%20data) for rich multivariate data analysis, see `Figure 1` as an example of a 2D torus map generated from the package. Tending towards a big data preponderance, a large number of rows. A collection of R functions for this typical workflow is organized below:
The HVT package is a collection of R functions to facilitate building [topology preserving maps](https://users.ics.aalto.fi/jhollmen/dippa/node9.html#:~:text=The%20property%20of%20topology%20preserving,tool%20of%20high%2Ddimensional%20data) for rich multivariate data analysis, see `Figure 1` as an example of a 2D torus map generated from the package. Tending towards a big data preponderance, a large number of rows. A collection of R functions for this typical workflow is organized below:

1. **Data Compression**: Vector quantization (VQ), HVQ (hierarchical vector quantization) using means or medians. This step compresses the rows (long data frame) using a compression objective.

Expand All @@ -33,9 +33,9 @@ The muHVT package is a collection of R functions to facilitate building [topolog
4. **Prediction**: Scoring new data sets and recording their assignment using the map objects from the above steps, in a sequence of maps if required.


The muHVT package allows creation of visually stunning tessellations, showcasing the power of topology preserving maps. Below is an image depicting a captivating tessellation of a torus, see [vignette](https://htmlpreview.github.io/?https://github.com/Somya545/muHVT/blob/master/vignettes/muHVT_vignette.html) for more details.
The HVT package allows creation of visually stunning tessellations, showcasing the power of topology preserving maps. Below is an image depicting a captivating tessellation of a torus, see [vignette](https://htmlpreview.github.io/?https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/HVT.html) for more details.

<img src="https://github.com/Somya545/muHVT/blob/master/vignettes/torus.png" width="642px" height="440px" />
<img src="https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/torus.png" width="642px" height="440px" />
<p class="caption">
Figure 1: The Voronoi tessellation for layer 1 and number of cells 900 with the heat map overlaid for variable z.
</p>
Expand All @@ -47,20 +47,20 @@ Figure 1: The Voronoi tessellation for layer 1 and number of cells 900 with the

# <span class="header-section-number">2</span> Version History

<div id="muhvt-(v23.06.07)-whats-new" class="section level2" number="2.1">
<div id="hvt-(v23.10.15)-whats-new" class="section level2" number="2.1">

## <span class="header-section-number">2.1</span> muHVT (v23.06.07) | What’s New?
## <span class="header-section-number">2.1</span> HVT (v23.10.15) | What’s New?

07th June, 2023
15th October, 2023

In this version of muHVT package, the following new features have been introduced:
In this version of HVT package, the following new features have been introduced:

This package provides functionality to predict cells with layers based on a sequence of maps using `predictLayerHVT`.
</div>

<div id="muhvt-(v22.12.06)" class="section level2" number="2.2">
<div id="hvt-(v22.12.06)" class="section level2" number="2.2">

## <span class="header-section-number">2.2</span> muHVT (v22.12.06)
## <span class="header-section-number">2.2</span> HVT (v22.12.06)

06th December, 2022

Expand All @@ -75,16 +75,16 @@ The creation of a predictive set of maps involves three steps -

Let us try to understand the steps with the help of the diagram below -

<img src="https://github.com/Somya545/muHVT/blob/master/vignettes/predictLayerHVT_function.png" width="672px" height="480px" />
<img src="https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/predictLayerHVT_function.png" width="672px" height="480px" />
<p class="caption">
Figure 2: Flow diagram for predicting based on a sequence of maps using predictLayerHVT()
</p>



<div id="installation-of-muhvt-(v23.06.07)" class="section level2" number="3">
<div id="installation-of-hvt-(v23.10.15)" class="section level2" number="3">

# <span class="header-section-number">3</span> Installation of muHVT (v23.06.07)
# <span class="header-section-number">3</span> Installation of HVT (v23.10.15)

<div class="sourceCode" id="cb1">

Expand All @@ -102,26 +102,26 @@ Figure 2: Flow diagram for predicting based on a sequence of maps using predictL

# <span class="header-section-number">4</span> Vignettes

Following are the links to the vignettes for the muHVT package:
Following are the links to the vignettes for the HVT package:

<div id="muhvt-vignette" class="section level2" number="4.1">
<div id="hvt-vignette" class="section level2" number="4.1">

## <span class="header-section-number">4.1</span> muHVT Vignette
## <span class="header-section-number">4.1</span> HVT Vignette

[**muHVT Vignette:**](https://htmlpreview.github.io/?https://github.com/Somya545/muHVT/blob/master/vignettes/muHVT_vignette.html) Contains descriptions of the functions used for vector quantization and construction of hierarchical voronoi tessellations for data analysis.
[**HVT Vignette:**](https://htmlpreview.github.io/?https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/HVT.html) Contains descriptions of the functions used for vector quantization and construction of hierarchical voronoi tessellations for data analysis.

</div>

<div id="muhvt-model-diagnostics-vignette" class="section level2" number="4.2">
<div id="hvt-model-diagnostics-vignette" class="section level2" number="4.2">

## <span class="header-section-number">4.2</span> muHVT Model Diagnostics Vignette
## <span class="header-section-number">4.2</span> HVT Model Diagnostics Vignette

[**muHVT Model Diagnostics Vignette:**](https://htmlpreview.github.io/?https://github.com/Somya545/muHVT/blob/master/vignettes/muHVT_model_diagnostics_vignette.html) Contains descriptions of functions used to perform model diagnostics and validation for muHVT model.
[**HVT Model Diagnostics Vignette:**](https://htmlpreview.github.io/?https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/HVT_model_diagnostics_vignette.html) Contains descriptions of functions used to perform model diagnostics and validation for HVT model.

</div>

<div id="muhvt---predicting-cells-with-layers-using-predictLayerHVT" class="section level2" number="4.3">
<div id="hvt---predicting-cells-with-layers-using-predictLayerHVT" class="section level2" number="4.3">

## <span class="header-section-number">4.3</span> muHVT - Predicting Cells with Layers using predictLayerHVT
## <span class="header-section-number">4.3</span> HVT - Predicting Cells with Layers using predictLayerHVT

[**muHVT : Predicting Cells with Layers using predictLayerHVT :**](https://htmlpreview.github.io/?https://github.com/Somya545/muHVT/blob/master/vignettes/Predicting_Cells_with_Layers_using_predictLayerHVT.html) Contains descriptions of the functions used for predicting cells with layers based on a sequence of maps using predictLayerHVT.
[**HVT : Predicting Cells with Layers using predictLayerHVT :**](https://htmlpreview.github.io/?https://github.com/Mu-Sigma/muHVT/blob/master/vignettes/Predicting_Cells_with_Layers_using_predictLayerHVT.html) Contains descriptions of the functions used for predicting cells with layers based on a sequence of maps using predictLayerHVT.
Binary file removed muHVT_(v22.12.06).tar.gz
Binary file not shown.
4 changes: 2 additions & 2 deletions tests/testthat.R
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@

library(testthat)
library(muHVT)
library(HVT)

test_check("muHVT")
test_check("HVT")

8 changes: 4 additions & 4 deletions tests/testthat/testhvt.R
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ test_that("getCentroids give correct results for L1_Norm and mean",{
skip_on_cran()

set.seed(420)
hvt.results <- muHVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L1_Norm",error_metric = "mean", quant_method = "kmeans")
hvt.results <- HVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L1_Norm",error_metric = "mean", quant_method = "kmeans")

expect_equal(length(hvt.results),6)

Expand All @@ -26,7 +26,7 @@ test_that("getCentroids give correct results for L2_Norm and mean",{

set.seed(420)

hvt.results <- muHVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L2_Norm",error_metric = "mean", quant_method = "kmeans")
hvt.results <- HVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L2_Norm",error_metric = "mean", quant_method = "kmeans")

expect_equal(length(hvt.results),6)

Expand All @@ -40,7 +40,7 @@ test_that("getCentroids give correct results for L1_Norm and max",{

set.seed(420)

hvt.results <- muHVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L1_Norm",error_metric = "max", quant_method = "kmeans")
hvt.results <- HVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L1_Norm",error_metric = "max", quant_method = "kmeans")

expect_equal(length(hvt.results),6)

Expand All @@ -53,7 +53,7 @@ test_that("getCentroids give correct results for L2_Norm and max",{
skip_on_cran()

set.seed(420)
hvt.results <- muHVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L2_Norm",error_metric = "max", quant_method = "kmeans")
hvt.results <- HVT::HVT(USArrests,n_cells = 3,depth = 1,quant.err = 0.2,distance_metric = "L2_Norm",error_metric = "max", quant_method = "kmeans")

expect_equal(length(hvt.results),6)

Expand Down
Loading