-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9a17de4
commit 8cc2ff0
Showing
7 changed files
with
183 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from collections import Counter | ||
import scipy.stats as stats | ||
import time | ||
|
||
def simulate_coin_tosses(n_flips, n_trials, seed=None, sleep_time = 1): | ||
if seed is not None: | ||
np.random.seed(seed) | ||
|
||
# Simulate coin tosses for each trial | ||
coin_tosses = np.random.choice([-1, 1], size=(n_trials, n_flips)) | ||
|
||
# Calculate the sum of coin tosses for each trial | ||
coin_sums = np.sum(coin_tosses, axis=1) | ||
|
||
return coin_sums | ||
|
||
def plot_frequency(max_n_flips, n_trials, seed=None, sleep_time=10**-10): | ||
for n_flips in range(1, max_n_flips + 1): | ||
# Simulate coin tosses and calculate sums | ||
coin_sums = simulate_coin_tosses(n_flips, n_trials, seed) | ||
|
||
# Calculate the frequencies of each sum | ||
frequencies = Counter(coin_sums) | ||
|
||
# Calculate the probabilities | ||
probabilities = {k: v / n_trials for k, v in frequencies.items()} | ||
|
||
# Create the bar plot | ||
plt.bar(probabilities.keys(), probabilities.values(), alpha=0.75) | ||
plt.title(f"Frequency Plot of Coin Tosses Sum with Normal Distribution (n_flips = {n_flips})") | ||
plt.xlabel("Sum") | ||
plt.ylabel("Probability") | ||
plt.grid(True) | ||
|
||
# Calculate the mean and standard deviation of coin_sums | ||
mean = np.mean(coin_sums) | ||
std_dev = np.std(coin_sums) | ||
|
||
# Generate x values for the normal distribution | ||
x = np.linspace(min(coin_sums), max(coin_sums), 100) | ||
|
||
# Calculate the normal distribution probability density function (PDF) values | ||
y = stats.norm.pdf(x, mean, std_dev) | ||
|
||
# Plot the smooth normal distribution | ||
plt.plot(x, y, 'r', linewidth=2) | ||
|
||
# Set x-axis ticks and limits | ||
#plt.xticks(np.arange(-10, 11, step=1)) | ||
#plt.xlim(-10, 10) | ||
|
||
# Show the plot and pause for a specified time | ||
plt.draw() | ||
plt.pause(sleep_time) | ||
|
||
# Clear the plot for the next iteration, but not after the last n | ||
if n_flips != max_n_flips: | ||
plt.clf() | ||
|
||
plt.show() | ||
|
||
# Parameters | ||
max_n_flips = int(input("Trials: ")) | ||
n_trials = 10000 | ||
seed = 42 | ||
|
||
# Plot the frequency plot of the coin tosses sum with normal distribution overlay in real-time | ||
plot_frequency(max_n_flips = max_n_flips, n_trials = n_trials) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from IPython.display import clear_output | ||
|
||
def random_walk_1d_real_time(n_steps, seed=None, pause_time=0.01): | ||
if seed is not None: | ||
np.random.seed(seed) | ||
|
||
# Initialize the position | ||
position = 0 | ||
|
||
# Create an empty plot | ||
plt.figure() | ||
plt.title("1D Random Walk") | ||
plt.xlabel("Steps") | ||
plt.ylabel("Position") | ||
|
||
# Initialize the position history for plotting lines | ||
position_history = [0] | ||
|
||
# Generate and plot each step | ||
for i in range(n_steps): | ||
# Generate a random step: -1 (left) or 1 (right) | ||
step = np.random.choice([-1, 1]) | ||
|
||
# Update the position | ||
position += step | ||
|
||
# Update the position history | ||
position_history.append(position) | ||
|
||
# Update the plot | ||
plt.plot(position_history, c='b') | ||
plt.xlim(0, n_steps) | ||
plt.yticks(np.arange(-10, 11, step=1)) | ||
plt.ylim(-10, 10) # Set the y-axis limits to -10 and 10 | ||
|
||
if i < n_steps - 1: # Don't clear the output on the last step | ||
plt.pause(pause_time) | ||
clear_output(wait=True) | ||
else: | ||
# Print the absolute value of the y position at the end of n steps | ||
print(f"Absolute position at the end of {n_steps} steps: {abs(position)}") | ||
plt.pause(pause_time) | ||
clear_output(wait=True) | ||
|
||
plt.show() | ||
|
||
# Parameters | ||
n_steps = 100 | ||
pause_time = 0.01 | ||
|
||
# Simulate and visualize the random walk in real-time without a specific seed | ||
random_walk_1d_real_time(n_steps, pause_time=pause_time) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import time | ||
|
||
def random_walk_2d_step(x, y): | ||
step = np.random.choice(['up', 'down', 'left', 'right']) | ||
|
||
if step == 'up': | ||
y += 1 | ||
elif step == 'down': | ||
y -= 1 | ||
elif step == 'left': | ||
x -= 1 | ||
elif step == 'right': | ||
x += 1 | ||
|
||
return x, y | ||
|
||
def plot_random_walk_2d_realtime(n_steps, seed=None, sleep_time=0.3): | ||
if seed is not None: | ||
np.random.seed(seed) | ||
|
||
x_positions = [0] | ||
y_positions = [0] | ||
|
||
plt.ion() # Enable interactive mode | ||
plt.title("2D Random Walk") | ||
plt.xlabel("X") | ||
plt.ylabel("Y") | ||
plt.grid(True) | ||
|
||
# Set fixed axis limits | ||
plt.xlim(-10, 10) | ||
plt.ylim(-10, 10) | ||
|
||
# Add "Start" text at the starting point | ||
plt.text(x_positions[0], y_positions[0], "Start", fontsize=12, color='red') | ||
|
||
for i in range(n_steps): | ||
x, y = random_walk_2d_step(x_positions[-1], y_positions[-1]) | ||
x_positions.append(x) | ||
y_positions.append(y) | ||
|
||
plt.plot(x_positions[-2:], y_positions[-2:], marker='o', markersize=5, linestyle='-') | ||
plt.draw() | ||
plt.pause(sleep_time) | ||
|
||
# Add "Finish" text at the ending point | ||
plt.text(x_positions[-1], y_positions[-1], "Finish", fontsize=12, color='green') | ||
|
||
plt.ioff() # Disable interactive mode | ||
plt.show() | ||
|
||
# Parameters | ||
n_steps = 50 | ||
seed = 42 | ||
|
||
# Simulate and plot the 2D random walk in real-time | ||
plot_random_walk_2d_realtime(n_steps) |