Skip to content

JediKnight007/Job-Repo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🎓 Technical Portfolio Repository

A comprehensive collection of advanced computer science projects spanning systems programming, AI/ML, numerical computing, cryptography, and data science.


📂 Repository Structure

Job-Repo/
├── README.md (this file)
├── MASTER_README.md (detailed index)
│
├── 01_Assembly_Code_Project/
│   ├── README.md
│   └── Assembly_Code_Project.zip
│
├── 02_Classical_and_Modified_Gram_Schmidt/
│   ├── README.md
│   └── Classical_and_Modified_Gram_Schmidt.zip
│
├── 03_Foreground_Background_Processes_Project/
│   ├── README.md
│   └── Foreground_Background_Processes_Project.zip
│
├── 04_Game_MinMax_AI_Project/
│   ├── README.md
│   └── Game_MinMax_AI_Project.zip
│
├── 05_Gaussian_Elimination_and_Hessenberg/
│   ├── README.md
│   └── Gaussian_Elimination_and_Hessenberg.zip
│
├── 06_LLM_from_Scratch/
│   ├── README.md
│   └── LLM-from-Scratch.zip
│
├── 07_Message_Board_Project/
│   ├── README.md
│   └── Message_Board_Project.zip
│
├── 08_Randomized_Buffer_Assembly_Project/
│   ├── README.md
│   └── Randomized_Buffer_Assembly_Project.zip
│
├── 09_Terminal_Shell_Project/
│   ├── README.md
│   └── Terminal_Shell_Project.zip
│
├── 10_Tree_Merger_Project/
│   ├── README.md
│   └── Tree_Merger_Project.zip
│
├── 11_Triangular_Matrix/
│   ├── README.md
│   └── Triangular_Matrix.zip
│
├── 12_Dropbox_Project/
│   ├── README.md
│   └── dropbox.zip
│
├── 13_Azure_BLOB_Storage_Client/
│   ├── README.md
│   └── BLOB.py
│
├── 14_Metropolis_Hastings_MCMC/
│   ├── README.md
│   └── Metropolis_Hastings_Poisson.ipynb
│
├── 15_Econometrics_Projects/
│   ├── README.md
│   ├── Birthweight.smcl
│   ├── CPS.smcl
│   ├── CPS6.pdf
│   └── GrowthLog.smcl
│
└── 16_Soviet_Film_Data_Scraper/
    ├── README.md
    ├── scripts/          # Python scraping scripts
    ├── data/            # CSV datasets (4,652 films)
    ├── docs/            # Technical documentation
    └── outputs/         # Processing outputs

🚀 Quick Navigation

By Domain

Systems Programming → Projects 01, 03, 08, 09
Artificial Intelligence → Projects 04, 06
Numerical Computing → Projects 02, 05, 11
Data Structures → Projects 07, 10
Security & Cryptography → Projects 08, 12
Cloud Computing → Project 13
Statistics & Data Science → Projects 14, 15, 16

By Language

C → 01, 03, 09
x86-64 Assembly → 01, 08
Python → 06, 07, 10, 12, 13, 14
MATLAB → 02, 05, 11
ReasonML/OCaml → 04
Stata → 15


📋 Project Summary

# Project Domain Languages Highlights
01 Assembly Traps & Signals Systems x86-64 ASM, C Signal handlers, GDB debugging
02 Gram-Schmidt QR Numerical MATLAB Orthogonalization, stability analysis
03 Shell with Job Control Systems C Process management, signals
04 Connect 4 MinMax AI AI ReasonML Alpha-beta pruning, convolution
05 Gaussian Elimination Numerical MATLAB Matrix decomposition, LU/Cholesky
06 AlphaGo-Style AI AI/ML Python MCTS, neural networks, PyTorch
07 Message Board System Database Python Query optimization, indexing
08 Buffer Overflow Exploits Security x86-64 ASM ROP chains, binary exploitation
09 Unix Shell Systems C I/O redirection, process execution
10 Tree Merger Algorithms Python Tree algorithms, recursion
11 Triangular Solver Numerical MATLAB Forward/backward substitution
12 Secure Dropbox Crypto Python End-to-end encryption, AES/RSA
13 Azure Blob Client Cloud Python Azure SDK, async programming
14 MCMC Sampling Statistics Python Metropolis-Hastings, convergence
15 Econometrics Suite Statistics Stata Regression, causal inference
16 Soviet Film Scraper Data Science Python Web scraping, NLP, translation

🎯 Skills Demonstrated

Technical Skills

  • Systems Programming: Process management, signals, memory management
  • Algorithm Design: Tree traversal, graph algorithms, optimization
  • Machine Learning: Neural networks, MCTS, supervised learning
  • Numerical Methods: Linear algebra, matrix decomposition, stability
  • Cryptography: Encryption, signatures, secure protocols
  • Database Design: Indexing, query optimization, data modeling
  • Statistical Computing: MCMC, regression, hypothesis testing

Software Engineering

  • Clean code architecture
  • Comprehensive documentation
  • Testing and validation
  • Error handling and robustness
  • Performance optimization
  • Version control (Git)

Languages & Tools

  • Languages: C, Python, x86-64 Assembly, MATLAB, ReasonML, Stata
  • Tools: GDB, Git, PyTorch, Azure SDK, NumPy, Matplotlib
  • Platforms: Unix/Linux, Azure Cloud, Jupyter

📖 How to Use This Repository

  1. Browse Projects: Each numbered folder contains a complete project
  2. Read Documentation: Every project has a comprehensive README.md
  3. Review Code: Source code is in zip files or directly in folders
  4. See Details: Open MASTER_README.md for in-depth portfolio overview

For Each Project:

cd XX_Project_Name/
cat README.md          # Read full documentation
unzip *.zip           # Extract source code (if zipped)

🌟 Project Highlights

Most Complex

06_LLM_from_Scratch - AlphaGo-inspired AI with MCTS + deep learning (17GB+ datasets)

Most Secure

12_Dropbox_Project - Production-grade end-to-end encrypted cloud storage

Most Low-Level

08_Randomized_Buffer_Assembly_Project - Binary exploitation with ROP chains

Most Mathematical

05_Gaussian_Elimination_and_Hessenberg - Complete matrix decomposition suite


📚 Documentation

  • README.md (this file) - Quick overview and navigation
  • MASTER_README.md - Comprehensive portfolio index with detailed descriptions
  • Individual READMEs - In-depth documentation for each project including:
    • Technical overview
    • Implementation details
    • Skills demonstrated
    • Learning outcomes
    • Real-world applications

💡 Use Cases

For Employers

Demonstrates expertise in:

  • Systems programming and operating systems
  • Algorithm design and implementation
  • Machine learning and AI
  • Security and cryptography
  • Database systems
  • Statistical analysis

For Learning

Each project includes:

  • Detailed implementation explanations
  • Algorithmic complexity analysis
  • Best practices and patterns
  • Common pitfalls and solutions
  • Further reading resources

📊 Repository Stats

  • Total Projects: 15
  • Programming Languages: 6+
  • Technical Domains: 7+
  • Total Lines of Code: 10,000+
  • Documentation Pages: 15 comprehensive READMEs

🔗 Quick Links


📧 About

This repository showcases advanced technical projects completed as part of academic coursework and personal development, demonstrating proficiency across multiple computer science domains.

Organization: Projects are numbered 01-15 for easy navigation
Documentation: Each project includes comprehensive README with code examples
Code Quality: Production-level code with testing and documentation


Last Updated: January 2026
Total Projects: 15
Repository Status: Complete and documented

About

For job applications

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published