Skip to content

Latest commit

 

History

History
46 lines (41 loc) · 1.73 KB

README.md

File metadata and controls

46 lines (41 loc) · 1.73 KB

Finetuning Octo to a new Observation/Action Space

Installation

The following instructions were tested on Ubuntu 22.04 and Linux 5.13.0 using Python 3.10

Create a virtual environment using Anaconda:

conda create -n robot-learning python=3.10
conda activate robot-learning

Clone and install Octo:

git clone https://github.com/octo-models/octo.git
cd octo 
pip install -e .
pip install -r requirements.txt

Install JAX (GPU or TPU):

pip install --upgrade "jax[cuda11_pip]==0.4.20" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install --upgrade "jax[tpu]==0.4.20" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html

Clone Tony Z. Zhao's ACT (Action Chunking with Transformers) for its simulated ALOHA environment Transfer Cube:

git clone https://github.com/tonyzhaozh/act.git
pip3 install opencv-python modern_robotics pyrealsense2 h5py_cache pyquaternion pyyaml rospkg pexpect mujoco==2.3.3 dm_control==1.0.9 einops packaging h5py ipython

Finetuning

Finetuning Octo to a new observation space and a new action space on simulated ALOHA cube handover data.

Download and extract the dataset:

wget https://rail.eecs.berkeley.edu/datasets/example_sim_data.zip
unzip example_sim_data.zip

Run scripts/finetune.py:

python scripts/finetune.py \
--pretrained_path=hf://rail-berkeley/octo-small \
--data_dir=PATH/TO/aloha_sim_dataset  \
--save_dir=PATH/TO/CHECKPOINT/DIR