Skip to content

add log parsers for detection models #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from

Conversation

zzhfz
Copy link

@zzhfz zzhfz commented Apr 20, 2025

Description

Add automated log parsing scripts for FasterRCNN/YOLOv5/SSD models

Usage Example

1.FasterRCNN

(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/fasterrcnn$ python fasterrcnn_log_parser.py -l fasterrcnn_train.log -o fasterrcnn_metrics.csv
✅ 解析完成!结果已保存到 fasterrcnn_metrics.csv
共处理 13 个epoch,最终mAP: 0.6970
(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/fasterrcnn$ cat fasterrcnn_metrics.csv
epoch,learning_rate,val_mAP,total_loss,throughput(it/s)
1,0.0010,0.4385,0.9696,8.0200
2,0.0010,0.5407,0.7577,8.0200
... ...

2.YOLOv5

(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/yolo$ python yolo_log_parser.py -l yolov5_train.log -o yolov5_metrics.csv
✅ 解析完成!结果已保存到 yolov5_metrics.csv
共处理 19 个epoch
(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/yolo$ cat yolov5_metrics.csv
epoch,gpu_mem,box_loss,obj_loss,cls_loss,instances
0,6.419968,0.100159,0.083691,0.096369,212.332793
1,6.420000,0.073442,0.084803,0.073568,211.711195
... ...

3.SSD

(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/ssd$ python ssd_log_parser.py -l ssd_train.log -o ssd_metrics.csv
解析完成,结果已保存到 ssd_metrics.csv
(venv_fasterrcnn) sunjinge@ares1:~/PyTorchModels/Detection/ssd$ cat ssd_metrics.csv
epoch,batch,batch_time,data_time,loss
0,0/2069,17.007,0.434,24.2514
1,0/2069,3.336,0.4,5.3279
... ...

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant