Skip to content

Infant-Joshva/AdSpotter-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

⚡AdSpotter AI – Sports Sponsorship Intelligence

AI-powered system for automated advertisement detection, brand visibility analytics, video chunking, PDF report generation, and RAG-based conversational insights — built for analysing cricket match broadcasts and producing sponsor-ready analytics.

🚀 Project Overview

AdSpotter AI – Sports Sponsorship Intelligence detects brand advertisements in match videos, calculates visibility metrics, classifies placements, extracts brand chunks, stores analytics in an RDS, and exposes dashboards + a RAG-powered chatbot for natural language queries.

🎯 Key Features

  • Brand Detection (YOLOv8 – Ultralytics)
  • Placement Classification (boundary, jersey, overlay, scoreboard)
  • Match Moment Tagging (six, wicket, batting, bowling, fielding)
  • Timestamp & Duration Extraction
  • Video Chunking (FFmpeg + S3 Upload)
  • Automated PDF Report Generation
  • Interactive Streamlit Dashboard
  • RAG Chatbot using Google Generative AI

📁 Folder Structure


Jio_AdVision_Analytics/
├── app/ # Streamlit dashboard UI + backend processing functions
├── docs/ # source video links
├── model/ # YOLO models
├── notebooks/ # Jupyter notebooks for experimentation & testing
├── testing_video/ # Small test videos used for demo/testing purpose
├── requirements.txt # Python dependency list
├── README.md 
└── .gitignore 

📸 Dashboard Screenshot


📄 About Project

About-Page

🧭 Insights & Metrics

Tracking

Visual Analytics

Brand Exposure Insights

Chat Bot

System Controls


🛠️ Tech Stack

  • YOLOv8 (Ultralytics)
  • OpenCV
  • Streamlit
  • Plotly
  • SQLAlchemy
  • PostgreSQL (RDS)
  • boto3 (AWS S3)
  • FFmpeg
  • ReportLab
  • Google Generative AI (RAG)

⚙️ Setup Instructions

1. Clone Repo

git clone https://github.com/Infant-Joshva/Jio_AdVision_Analytics.git
cd Jio_AdVision_Analytics

2. Install Dependencies

pip install -r requirements.txt

3. Add Secrets

Create app/.streamlit/secrets.toml with:

aws_access_key="YOUR_AWS_KEY"
aws_secret_key="YOUR_AWS_SECRET"
bucket_name="YOUR_BUCKET_NAME"
genai_api_key="YOUR_GENAI_KEY"
database_url="postgresql://user:pass@host:port/db"

4. Run Dashboard

streamlit run app/main.py

📦 AWS S3 Structure


s3://jioadvision-uploads/
  └── MatchID/
      └── chunks/
          └── chunk.mp4
      └── raw/
          └── raw.mp4
      └── track/
          └── track.mp4

📄 PDF Report Output

  • Visibility duration
  • Visibility ratio
  • Placement distribution
  • Event-based visibility
  • S3 chunk links

🧩 API Endpoints

POST /api/upload
GET  /api/status/<id>
GET  /api/report/<match>
GET  /api/aggregate

📈 Evaluation Metrics

  • Detection precision / recall / F1
  • Timestamp accuracy
  • Video chunk quality
  • Dashboard-RDS sync accuracy
  • RAG answer correctness

✅ Deliverables

  • Full pipeline code
  • YOLO model + weights
  • Test video
  • Extracted clips
  • Streamlit dashboard
  • PDF reports
  • RAG chatbot
  • Documentation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published