-
Notifications
You must be signed in to change notification settings - Fork 144
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Maroun Touma <[email protected]>
- Loading branch information
Showing
3 changed files
with
212 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "afd55886-5f5b-4794-838e-ef8179fb0394", | ||
"metadata": {}, | ||
"source": [ | ||
"##### **** These pip installs need to be adapted to use the appropriate release level. Alternatively, The venv running the jupyter lab could be pre-configured with a requirement file that includes the right release. Example for transform developers working from git clone:\n", | ||
"```\n", | ||
"make venv \n", | ||
"source venv/bin/activate \n", | ||
"pip install jupyterlab\n", | ||
"```" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4c45c3c6-e4d7-4e61-8de6-32d61f2ce695", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%%capture\n", | ||
"## This is here as a reference only\n", | ||
"# Users and application developers must use the right tag for the latest from pypi\n", | ||
"%pip install data-prep-toolkit\n", | ||
"%pip install data-prep-toolkit-transforms" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "407fd4e4-265d-4ec7-bbc9-b43158f5f1f3", | ||
"metadata": { | ||
"jp-MarkdownHeadingCollapsed": true | ||
}, | ||
"source": [ | ||
"##### **** Configure the transform parameters. The set of dictionary keys holding DocIDTransform configuration for values are as follows: \n", | ||
"| Key name | Default | Description |\n", | ||
"|------------|----------|--------------|\n", | ||
"| _model_credential_ | _unset_ | specifies the credential you use to get model. This will be huggingface token. [Guide to get huggingface token](https://huggingface.co/docs/hub/security-tokens) |\n", | ||
"| _model_kind_ | _unset_ | specifies what kind of model you want to use for language identification. Currently, only `fasttext` is available. |\n", | ||
"| _model_url_ | _unset_ | specifies url that model locates. For fasttext, this will be repo nme of the model, like `facebook/fasttext-language-identification` |\n", | ||
"| _content_column_name_ | `contents` | specifies name of the column containing documents |\n", | ||
"| _output_lang_column_name_ | `lang` | specifies name of the output column to hold predicted language code |\n", | ||
"| _output_score_column_name_ | `score` | specifies name of the output column to hold score of prediction |" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ebf1f782-0e61-485c-8670-81066beb734c", | ||
"metadata": {}, | ||
"source": [ | ||
"##### ***** Import required classes and modules" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "9669273a-8fcc-4b40-9b20-8df658e2ab58", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from dpk_lang_id.transform_python import LangIdRuntime" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7234563c-2924-4150-8a31-4aec98c1bf33", | ||
"metadata": {}, | ||
"source": [ | ||
"##### ***** Setup runtime parameters for this transform" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "badafb96-64d2-4bb8-9f3e-b23713fd5c3f", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"00:06:41 INFO - lang_id parameters are : {'model_credential': 'PUT YOUR OWN HUGGINGFACE CREDENTIAL', 'model_kind': 'fasttext', 'model_url': 'facebook/fasttext-language-identification', 'content_column_name': 'text', 'output_lang_column_name': 'lang', 'output_score_column_name': 'score'}\n", | ||
"00:06:41 INFO - pipeline id pipeline_id\n", | ||
"00:06:41 INFO - code location None\n", | ||
"00:06:41 INFO - data factory data_ is using local data access: input_folder - test-data/input output_folder - output\n", | ||
"00:06:41 INFO - data factory data_ max_files -1, n_sample -1\n", | ||
"00:06:41 INFO - data factory data_ Not using data sets, checkpointing False, max files -1, random samples -1, files to use ['.parquet'], files to checkpoint ['.parquet']\n", | ||
"00:06:41 INFO - orchestrator lang_id started at 2024-12-11 00:06:41\n", | ||
"00:06:41 INFO - Number of files is 3, source profile {'max_file_size': 0.3023223876953125, 'min_file_size': 0.037346839904785156, 'total_file_size': 0.4433746337890625}\n", | ||
"Warning : `load_model` does not return WordVectorModel or SupervisedModel any more, but a `FastText` object which is very similar.\n", | ||
"00:06:47 INFO - Completed 1 files (33.33%) in 0.074 min\n", | ||
"00:06:47 INFO - Completed 2 files (66.67%) in 0.076 min\n", | ||
"00:06:48 INFO - Completed 3 files (100.0%) in 0.081 min\n", | ||
"00:06:48 INFO - Done processing 3 files, waiting for flush() completion.\n", | ||
"00:06:48 INFO - done flushing in 0.0 sec\n", | ||
"00:06:48 INFO - Completed execution in 0.111 min, execution result 0\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0" | ||
] | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"LangIdRuntime(input_folder= \"test-data/input\",\n", | ||
" output_folder= \"output\",\n", | ||
" lang_id_model_credential= \"PUT YOUR OWN HUGGINGFACE CREDENTIAL\",\n", | ||
" lang_id_model_kind= \"fasttext\",\n", | ||
" lang_id_model_url= \"facebook/fasttext-language-identification\",\n", | ||
" lang_id_content_column_name= \"text\").transform()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c3df5adf-4717-4a03-864d-9151cd3f134b", | ||
"metadata": {}, | ||
"source": [ | ||
"##### **** The specified folder will include the transformed parquet files." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "7276fe84-6512-4605-ab65-747351e13a7c", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['output/test_03.parquet',\n", | ||
" 'output/test_02.parquet',\n", | ||
" 'output/metadata.json',\n", | ||
" 'output/test_01.parquet']" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import glob\n", | ||
"glob.glob(\"output/*\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "845a75cf-f4a9-467d-87fa-ccbac1c9beb8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |