Skip to content

Hermanlrx/SRBClassificationCodeAndData

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Solar Radio Burst Classification

Classification of solar radio bursts from spectrogram images using transfer learning models.

Overview

This project classifies solar radio burst spectrograms into three categories:

  • Type II: Slow-drifting bursts associated with CMEs
  • Type III: Fast-drifting bursts from electron beams
  • Empty: Background spectrograms without bursts

Setup

# Clone repository
git clone https://github.com/Hermanlrx/SRBClassificationCodeAndData.git
cd SRBClassificationCodeAndData

# Create conda environment
conda create -n solar-bursts python=3.9
conda activate solar-bursts

# Install dependencies
conda install tensorflow keras opencv matplotlib pandas numpy scikit-learn jupyter
pip install ultralytics  # For YOLO

Usage

Navigate to any model folder and run the corresponding Jupyter notebook:

jupyter notebook "Code and results of each model/1.Comparison Transferlearning Densenet201/1. Model+code/TransferLearningTest.ipynb"

Project Structure

Each model folder contains:

  • 1. Model+code/: Jupyter notebooks with implementation
  • 2. Images/: Training plots and visualizations
  • 3. Results/: CSV files and result analysis notebooks
  • confusion_matrix*.png: Model performance visualization
├── .gitignore
├── Code and results of each model/
│   ├── 1.Comparison Transferlearning Densenet201/
│   │   ├── 1. Model+code/
│   │   │   └── TransferLearningTest.ipynb
│   │   ├── 2. Images/
│   │   │   ├── DenseNetAcc.png
│   │   │   └── DenseNetLoss.png
│   │   ├── 3. Results/
│   │   │   ├── densenet.csv
│   │   │   └── Results.ipynb
│   │   └── confusion_matrixDensenet.png
│   ├── 2.Comparison Transferlearning LOCAL YOLOV8/
│   │   ├── 1. Model+code/
│   │   │   └── PYTORCH.ipynb
│   │   ├── 2. Images (Pytorch run)/
│   │   │   └── run/
│   │   │       ├── args.yaml
│   │   │       ├── confusion_matrix_normalized.png
│   │   │       ├── confusion_matrix.png
│   │   │       ├── results.csv
│   │   │       ├── results.png
│   │   │       ├── train_batch0.jpg
│   │   │       ├── train_batch1.jpg
│   │   │       ├── train_batch2.jpg
│   │   │       ├── val_batch0_labels.jpg
│   │   │       ├── val_batch0_pred.jpg
│   │   │       ├── val_batch1_labels.jpg
│   │   │       ├── val_batch1_pred.jpg
│   │   │       ├── val_batch2_labels.jpg
│   │   │       └── val_batch2_pred.jpg
│   │   ├── 3. Results/
│   │   │   ├── results.csv
│   │   │   └── results.ipynb
│   │   └── confusion_matrixYOLO.png
│   ├── 3.Comparison Transferlearning MobileNet/
│   │   ├── 1. Model+code/
│   │   │   └── TransferLearningTest.ipynb
│   │   ├── 2. Images/
│   │   │   ├── 0.8218125700950623_loss.png
│   │   │   └── MobileNet.png
│   │   ├── 3. Results/
│   │   │   ├── mobilenet.csv
│   │   │   └── Results.ipynb
│   │   └── confusion_matrix_MobileNet.png
│   ├── 4.Comparison Transferlearning RESnet152/
│   │   ├── 1. Model+code/
│   │   │   └── TransferLearningTest.ipynb
│   │   ├── 2. Images/
│   │   │   ├── 0.8003072142601013_loss.png
│   │   │   └── ResNet.png
│   │   ├── 3. Results/
│   │   │   ├── resnet152.csv
│   │   │   └── Results.ipynb
│   │   └── confusion_matrixResnet.png
│   └── 5.Comparison Transferlearning VGG19/
│       ├── 1. Model+code/
│       │   └── TransferLearningTest.ipynb
│       ├── 2. Images/
│       │   ├── 0.8064516186714172_loss.png
│       │   └── VGG.png
│       ├── 3. Results/
│       │   ├── Results.ipynb
│       │   ├── ResultsVgg19.xlsx
│       │   └── vgg19.csv
│       └── confusion_matrix_VGNETT.png
├── DATA/...
|
├── LICENSE
└── README.md

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published