Zeming Li
1. Download Documents for Setting Up the Environment, Our Pretrained Models, and Eval Datasets (Compulsory)
bash download.shconda create --name noise_ar python=3.10.8
conda activate noise_ar
make installFor example, to run inference using SDXL with our trained model:
python try.pyFor example, run eval using SDXL with our trained model on DrawBench Evaluation Dataset:
torchrun eval.py exp.suffix=eval_sdxl_DrawBench exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/DrawBenchClick to expand for all of our evaluation commands
# SDXL on DrawBench, GenEval, PickaPic
torchrun --master_port 13340 eval.py exp.suffix=eval_sdxl_DrawBench exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/DrawBench
torchrun --master_port 13341 eval.py exp.suffix=eval_sdxl_GenEval exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/GenEval
torchrun --master_port 13342 eval.py exp.suffix=eval_sdxl_PickaPic exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/PickaPic
# DreamShaper on DrawBench, GenEval, PickaPic
torchrun --master_port 13343 eval.py exp.suffix=eval_dreamshaper_DrawBench exp.pipeline=DreamShaper exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/DrawBench exp.cfg=3.5
torchrun --master_port 13344 eval.py exp.suffix=eval_dreamshaper_GenEval exp.pipeline=DreamShaper exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/GenEval exp.cfg=5.0
torchrun --master_port 13345 eval.py exp.suffix=eval_dreamshaper_PickaPic exp.pipeline=DreamShaper exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper/model.pth exp.val_data_path=data/PickaPic exp.cfg=5.0
# DiT on DrawBench, GenEval, PickaPic
torchrun --master_port 13346 eval.py exp.suffix=eval_dit_DrawBench exp.pipeline=DiT exp.pretrained_path=pretrained_models/dit/model.pth exp.val_data_path=data/DrawBench
torchrun --master_port 13347 eval.py exp.suffix=eval_dit_GenEval exp.pipeline=DiT exp.pretrained_path=pretrained_models/dit/model.pth exp.val_data_path=data/GenEval
torchrun --master_port 13348 eval.py exp.suffix=eval_dit_PickaPic exp.pipeline=DiT exp.pretrained_path=pretrained_models/dit/model.pth exp.val_data_path=data/PickaPic
# DPO of SDXL, DreamShaper, DiT on DrawBench
torchrun --master_port 13349 eval.py exp.suffix=eval_sdxl_DrawBench_DPO exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper_dpo/model.pth exp.val_data_path=data/DrawBench
torchrun --master_port 13350 eval.py exp.suffix=eval_dreamshaper_DrawBench_DPO exp.pipeline=DreamShaper exp.pretrained_path=pretrained_models/sdxl_and_dreamshaper_dpo/model.pth exp.val_data_path=data/DrawBench
torchrun --master_port 13351 eval.py exp.suffix=eval_dit_DrawBench_DPO exp.pipeline=DiT exp.pretrained_path=pretrained_models/dit_dpo/model.pth exp.val_data_path=data/DrawBench exp.cfg=5.0- Release the training code & data.
- Release the training code & data for DPO.
If you find this project useful for your research, please cite:
@misc{li2025noisearautoregressinginitialnoise,
title={NoiseAR: AutoRegressing Initial Noise Prior for Diffusion Models},
author={Zeming Li and Xiangyue Liu and Xiangyu Zhang and Ping Tan and Heung-Yeung Shum},
year={2025},
eprint={2506.01337},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2506.01337},
}
