Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: align linear_regression to PromQL's behavior #2879

Merged
merged 3 commits into from
Dec 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 23 additions & 5 deletions src/promql/src/functions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ pub(crate) fn linear_regression(
const_y = false;
}
count += 1.0;
let x = time - intercept_time as f64 / 1e3;
let x = (time - intercept_time as f64) / 1e3f64;
(sum_x, comp_x) = compensated_sum_inc(x, sum_x, comp_x);
(sum_y, comp_y) = compensated_sum_inc(value, sum_y, comp_y);
(sum_xy, comp_xy) = compensated_sum_inc(x * value, sum_xy, comp_xy);
Expand Down Expand Up @@ -188,8 +188,12 @@ mod test {
0.0, 10.0, 20.0, 30.0, 40.0, 0.0, 10.0, 20.0, 30.0, 40.0, 50.0,
]);
let (slope, intercept) = linear_regression(&ts_array, &values_array, ts_array.value(0));
assert_eq!(slope, Some(0.010606060606060607));
assert_eq!(intercept, Some(6.818181818181818));
assert_eq!(slope, Some(10.606060606060607));
assert_eq!(intercept, Some(6.818181818181815));

let (slope, intercept) = linear_regression(&ts_array, &values_array, 3000);
assert_eq!(slope, Some(10.606060606060607));
assert_eq!(intercept, Some(38.63636363636364));
}

#[test]
Expand Down Expand Up @@ -219,8 +223,8 @@ mod test {
.into_iter()
.collect();
let (slope, intercept) = linear_regression(&ts_array, &values_array, ts_array.value(0));
assert_eq!(slope, Some(0.010606060606060607));
assert_eq!(intercept, Some(6.818181818181818));
assert_eq!(slope, Some(10.606060606060607));
assert_eq!(intercept, Some(6.818181818181815));
}

#[test]
Expand All @@ -231,4 +235,18 @@ mod test {
assert_eq!(slope, None);
assert_eq!(intercept, None);
}

// From prometheus `promql/functions_test.go` case `TestKahanSum`
#[test]
fn test_kahan_sum() {
let inputs = vec![1.0, 10.0f64.powf(100.0), 1.0, -1.0 * 10.0f64.powf(100.0)];

let mut sum = 0.0;
let mut c = 0f64;

for v in inputs {
(sum, c) = compensated_sum_inc(v, sum, c);
}
assert_eq!(sum + c, 2.0)
}
}
29 changes: 28 additions & 1 deletion src/promql/src/functions/deriv.rs
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ pub fn deriv(times: &TimestampMillisecondArray, values: &Float64Array) -> Option

#[cfg(test)]
mod test {
use std::sync::Arc;

use super::*;
use crate::functions::test_util::simple_range_udf_runner;

Expand Down Expand Up @@ -73,7 +75,32 @@ mod test {
Deriv::scalar_udf(),
ts_array,
value_array,
vec![Some(0.010606060606060607), None],
vec![Some(10.606060606060607), None],
);
}

// From prometheus `promql/functions_test.go` case `TestDeriv`
#[test]
fn complicate_deriv() {
let start = 1493712816939;
let interval = 30 * 1000;
let mut ts_data = vec![];
for i in 0..15 {
let jitter = 12 * i % 2;
ts_data.push(Some(start + interval * i + jitter));
}
let val_data = vec![Some(1.0); 15];
let ts_array = Arc::new(TimestampMillisecondArray::from_iter(ts_data));
let val_array = Arc::new(Float64Array::from_iter(val_data));
let range = [(0, 15)];
let ts_range_array = RangeArray::from_ranges(ts_array, range).unwrap();
let value_range_array = RangeArray::from_ranges(val_array, range).unwrap();

simple_range_udf_runner(
Deriv::scalar_udf(),
ts_range_array,
value_range_array,
vec![Some(0.0)],
);
}
}
16 changes: 9 additions & 7 deletions src/promql/src/functions/predict_linear.rs
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ use crate::functions::{extract_array, linear_regression};
use crate::range_array::RangeArray;

pub struct PredictLinear {
/// Duration. The second param of (`predict_linear(v range-vector, t scalar)`).
t: i64,
}

Expand Down Expand Up @@ -147,8 +148,9 @@ fn predict_linear_impl(
return None;
}

let intercept_time = timestamps.value(0);
let (slope, intercept) = linear_regression(timestamps, values, intercept_time);
// last timestamp is evaluation timestamp
let evaluate_ts = timestamps.value(timestamps.len() - 1);
let (slope, intercept) = linear_regression(timestamps, values, evaluate_ts);

if slope.is_none() || intercept.is_none() {
return None;
Expand Down Expand Up @@ -210,7 +212,7 @@ mod test {
ts_array,
value_array,
// value at t = 0
vec![Some(6.818181818181818)],
vec![Some(38.63636363636364)],
);
}

Expand All @@ -222,7 +224,7 @@ mod test {
ts_array,
value_array,
// value at t = 3000
vec![Some(38.63636363636364)],
vec![Some(31856.818181818187)],
);
}

Expand All @@ -234,7 +236,7 @@ mod test {
ts_array,
value_array,
// value at t = 4200
vec![Some(51.36363636363637)],
vec![Some(44584.09090909091)],
);
}

Expand All @@ -246,7 +248,7 @@ mod test {
ts_array,
value_array,
// value at t = 6600
vec![Some(76.81818181818181)],
vec![Some(70038.63636363638)],
);
}

Expand All @@ -258,7 +260,7 @@ mod test {
ts_array,
value_array,
// value at t = 7800
vec![Some(89.54545454545455)],
vec![Some(82765.9090909091)],
);
}
}
3 changes: 2 additions & 1 deletion src/promql/src/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1017,7 +1017,8 @@ impl PromPlanner {
}
"predict_linear" => {
let t_expr = match other_input_exprs.pop_front() {
Some(DfExpr::Literal(ScalarValue::Time64Microsecond(Some(t)))) => t,
Some(DfExpr::Literal(ScalarValue::Float64(Some(t)))) => t as i64,
Some(DfExpr::Literal(ScalarValue::Int64(Some(t)))) => t,
other => UnexpectedPlanExprSnafu {
desc: format!("expect i64 literal as t, but found {:?}", other),
}
Expand Down
Loading