Skip to content

Releases: GestaltCogTeam/BasicTS

v1.1.0

19 Dec 05:01

Choose a tag to compare

🚀 New Features

  • Models: Upgraded FiLM, TiDE, and Koopa
  • Optimized the user experience of configuration files

🐛 Bug Fixes

  • Fixed the issue where the launcher reported errors when using DDP for training
  • Fixed issues with the BLAST dataset
  • Fixed numerous problems in models
  • Fixed the issue where configurations could not be loaded from JSON files when using selective learning
  • Fixed the issue where assignments in configurations could be unexpectedly overwritten by default values

🥂 New Contributors

  • @wgawmy made their first contribution in #293. Thanks to their contribution.

🚀 新功能

  • 模型:升级了FiLM、TiDE、Koopa
  • 优化了配置文件的使用体验

🐛 修复问题

  • 修复了launcher使用DDP训练报错的问题
  • 修复了BLAST数据集的问题
  • 修复了大量模型中存在的问题
  • 修复了使用选择学习无法从JSON文件中加载配置的问题
  • 修复了配置中的赋值会意外被默认值覆盖的问题

🥂 新贡献者

  • @wgawmy#293 中完成了首次贡献,感谢TA的贡献。

Version 1.0.2

11 Nov 03:25

Choose a tag to compare

🚀 New Features

  • Configuration: Optimized design. Users can now pass arbitrary parameters when constructing configuration classes.
  • Models: Added FITS (ICLR'24), FreTS (NeurIPS'23), Leddam (ICML'24), and upgraded StemGNN.
  • Modules: Added the normalization component STNorm (SIGKDD'21).

🐛 Bug Fixes

  • Fixed an issue where the runner could not properly resume training.
  • Fixed parameter inconsistencies between configuration classes and actual inputs.
  • Resolved issues in Crossformer and LightTS.
  • Fixed an issue where the LRScheduler could not run properly.

🚀 新功能

  • 配置:优化设计,用户现在可以在构造配置类时传递任意参数
  • 模型:新增FITS (ICLR'24)、FreTS (NeurIPS'23)、Leddam (ICML'24),升级了StemGNN
  • 模块:新增归一化组件 STNorm (SIGKDD'21)

🐛 修复问题

  • 修复了runner无法正常续训的问题
  • 修复配置类中参数与实际传入不一致的问题
  • 修复Crossformer、LightTS中存在的问题
  • 修复了使用LRScheduler时无法正常运行的问题

Version 1.0.1

05 Nov 03:08

Choose a tag to compare

🚀 New Features

  • Support loading configurations from JSON files
  • Provide runnable demos for various tasks in the examples directory
  • Upgraded SegRNN and Non-Stationary Transformer (upgrades for other models are in progress)
  • Optimized the architecture of Transformer components in modules for better extensibility
  • Added ProbAttention (AAAI'21 Informer) to the attention components in modules

🐛 Bug Fixes

  • Fixed bugs in Autoformer, Crossformer, and Informer models
  • Fixed issues in the classification and imputation task pipelines

🚀 新功能

  • 支持从JSON文件加载配置
  • 在项目examples路径下提供了各任务可运行的demo
  • 升级了SegRNN、Non-Stationary Transformer (其他模型的升级正在路上)
  • 优化了模块中Transformer组件的架构,使之更具可扩展性
  • 在模块的注意力组件中加入了ProbAttention (AAAI'21 Informer)

🐛 修复问题

  • 修复了Autoformer、Crossformer、Informer模型中存在的bug
  • 修复了分类与插补任务流程中存在的bug

Version 1.0.0

30 Oct 04:15

Choose a tag to compare

📣 Important

BasicTS version 1.0 is here! BasicTS 1.0 has undergone a comprehensive upgrade focusing on user-friendliness, multi-task support, and extensibility.

🚀 New Features

  • Optimized user experience, enabling model training or evaluation with just three lines of Python code
  • Added directly callable time series deep learning modules (Transformer components, MLP, ...)
  • Support for time series classification and imputation tasks
  • Enhanced extensibility with new taskflow and callback mechanisms, allowing users to modify workflows without changing the runner

🐛 Bug Fixes

  • Fixed the issue of potentially high GPU memory usage during model evaluation
  • Fixed incorrect calculation of training and evaluation metrics

🔧 Upgrade Instructions

For BasicTS 1.0 version, there's no need to clone the repository anymore. Simply download basicts-1.0-py3-none-any.whl and execute:

pip install basicts-1.0-py3-none-any.whl

📣 重要消息

BasicTS 1.0 版本来了!BasicTS 1.0 针对用户友好多任务支持可扩展性方面进行了全面升级。

🚀 新功能

  • 优化了用户的使用体验,三句Python代码实现模型训练或评估
  • 增加用户可以直接调用的时序深度学习模块(Transformer components, MLP, ...)
  • 支持时间序列分类和插补任务
  • 优化了可扩展性,新增taskflow和callback机制,用户无需再修改runner

🐛 修复问题

  • 修复在GPU上评估模型显存可能占用过高的问题
  • 修复训练、评估指标计算可能不正确的问题

🔧 升级说明

安装BasicTS v1.0 无需再clone仓库,只需下载basicts-1.0-py3-none-any.whl,然后执行:

pip install basicts-1.0-py3-none-any.whl

Version 1.0.0-beta

17 Oct 02:35

Choose a tag to compare

Version 1.0.0-beta Pre-release
Pre-release

📣 Important

BasicTS version 1.0 is here! Welcome to experience the beta version first. BasicTS 1.0 has undergone a comprehensive upgrade focusing on user-friendliness, multi-task support, and extensibility.

🚀 New Features

  • Optimized user experience, enabling model training or evaluation with just three lines of Python code
  • Added directly callable time series deep learning modules (Transformer components, MLP, ...)
  • Support for time series classification and imputation tasks
  • Enhanced extensibility with new taskflow and callback mechanisms, allowing users to modify workflows without changing the runner

🐛 Bug Fixes

  • Fixed the issue of potentially high GPU memory usage during model evaluation
  • Fixed incorrect calculation of training and evaluation metrics

🔧 Upgrade Instructions

For BasicTS 1.0 beta version, there's no need to clone the repository anymore. Simply download basicts-1.0-py3-none-any.whl and execute:

pip install basicts-1.0-py3-none-any.whl

📣 重要消息

BasicTS 1.0 版本来了!欢迎抢先体验测试版。BasicTS 1.0 针对用户友好多任务支持可扩展性方面进行了全面升级。

🚀 新功能

  • 优化了用户的使用体验,三句Python代码实现模型训练或评估
  • 增加用户可以直接调用的时序深度学习模块(Transformer components, MLP, ...)
  • 支持时间序列分类和插补任务
  • 优化了可扩展性,新增taskflow和callback机制,用户无需再修改runner

🐛 修复问题

  • 修复在GPU上评估模型显存可能占用过高的问题
  • 修复训练、评估指标计算可能不正确的问题

🔧 升级说明

安装BasicTS v1.0 beta无需再clone仓库,只需下载basicts-1.0-py3-none-any.whl,然后执行:

pip install basicts-1.0-py3-none-any.whl