Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions Data/Data_generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import numpy as np
import pandas as pd

class SyntheticDataGenerator:
def __init__(self, rows, cols, noise_level=0.4, random_seed=20):
self.rows = rows
self.cols = cols
self.noise_level = noise_level
self.random_seed = random_seed

def generate_data(self):
np.random.seed(self.random_seed)
X = np.random.randn(self.rows, self.cols)
coefficients = np.random.randn(self.cols)
coefficients[2:5] = 0 # Set some coefficients to 0 for sparsity
noise = np.random.randn(self.rows) * self.noise_level
y = X @ coefficients + noise

df = pd.DataFrame(X, columns=[f'feature_{i+1}' for i in range(self.cols)])
df['target'] = y

return df.drop(columns='target').to_numpy(), df['target'].to_numpy()


class CustomDataGenerator:
def __init__(self, coefficients, num_samples, intercept=0, value_range=(-10, 10), noise_scale=1, random_seed=86413459):
self.coefficients = np.array(coefficients)
self.num_samples = num_samples
self.intercept = intercept
self.value_range = value_range
self.noise_scale = noise_scale
self.random_seed = random_seed

def generate_linear_data(self):
np.random.seed(self.random_seed)
rng = np.random
X = rng.uniform(low=self.value_range[0], high=self.value_range[1], size=(self.num_samples, len(self.coefficients)))
y = X @ self.coefficients + self.intercept
noise = rng.normal(loc=0.0, scale=self.noise_scale, size=y.shape)
return X, y + noise
51 changes: 51 additions & 0 deletions Data/small_test.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
x_0,x_1,x_2,y
-2.421348566501347,6.290215260063935,2.516304163087373,10.240119830146476
8.13465811997068,-6.975968662410185,-3.2810945459842866,-6.8962940548446845
-0.4531238994261493,0.05889462611191654,-3.592293253611172,14.10428803155231
3.979832584128687,-8.129001764124755,9.202914789330517,-43.788867687445624
-4.354231825431758,2.4724749171156333,8.45972163584499,-12.067617018047834
8.726620980175113,-9.607722575405269,-5.092837184080405,-8.265643240683891
-0.29136484802189955,8.224663789274086,-3.8193339707565555,32.98185595386334
1.4118708853910462,6.003042800612462,3.9968255952773095,0.7267789346532836
0.21525181834957507,-3.321041549359367,-5.352746248495515,11.93444109619503
4.80226153299567,9.818246112545182,4.936296097738831,3.5995719453822046
9.71733974143089,0.1440918710436101,8.74993701189404,-34.917122745540794
4.098687611436789,-9.75205878861841,7.980744101999381,-43.32805584620358
-2.398060521804659,2.8278192128541733,-1.626174948927721,16.91539285950553
5.398272903061114,7.583046908728093,2.758295974535457,4.437457748228852
3.371527871466675,-5.430064318728407,2.1915998058530857,-16.03565826569788
2.0863644528269365,0.10824916542728857,8.144465640869694,-25.094326089867696
2.8255940202840684,-2.286321234798363,4.771241059098381,-18.000440202657604
-8.150227640024978,-4.259315052105519,1.8923353680502952,-1.3930242667026356
-6.067265316809651,3.6776254617776942,8.4817269440159,-10.278522746897893
8.64017362219969,9.717801217085075,4.980672567111553,-0.9266647796977245
-4.636910653452324,0.9373715699813872,4.978170771263397,-3.8217233698137143
-7.940395120999431,2.953441321061362,-0.9370552302607145,21.291726783530805
7.692709298116139,-5.485844206553388,-6.019643260327971,2.1873435652525455
-6.485086441297707,7.06589989184231,-8.842925435171665,50.35981404591074
5.036321300769028,2.0420739888497152,-4.368234397412891,15.435100617505809
-2.203566631709222,-6.141030616852454,-1.822186931753599,-0.5890454529472771
3.2620868350599768,7.851306022896178,-4.479265977335616,27.896949611024628
6.402611257683294,-4.018677430646336,0.48600102750762986,-12.289355696825485
5.378501224056757,4.355667003325474,-7.565417868242747,31.017195148404717
2.0486633392332614,8.253411759540757,-3.966950647644751,29.555547834722987
2.626017326894857,3.314924154867276,9.810418858378235,-22.85112181951592
-0.04750452520510429,5.935777040113393,-0.3470621837504506,16.516617979443822
-6.775500897482147,-0.8747563332852692,-2.758815934335188,16.55155644731519
-5.130765599150095,8.959898235120185,1.1701541118251235,22.753375944830324
9.607901921761815,-9.108821424255002,5.524296399378377,-41.93781490943017
-2.9201254899877434,5.134928295361929,-9.896226148902585,43.58829658171542
6.956501039100711,0.8359369151964895,-6.1636372998431295,16.225403196517274
7.725179239543149,-4.913104095867496,-1.110476120153832,-9.936035489824537
-6.142683379729563,1.4244393989902058,1.8529074318076262,5.554396424524908
-2.0474061706133977,-1.2170618863263076,8.899325908803291,-23.596187786238964
9.359523403637155,3.4124788823300065,-1.4222946765509725,2.4507844709064064
-8.642800876507275,-9.508822574677566,2.9901775243378577,-16.775543378589024
-2.470992582133973,5.1672327675732195,-8.753045094764744,40.855147394263106
-7.756097982925145,5.227601844332813,-3.179199348468109,30.739018818654756
5.393783291304004,-1.5186710515725927,-7.469139234639499,17.503383657767756
-7.644671911438172,1.8115363641056241,-6.167155079348694,33.57677356652164
6.557442460132911,-4.44188855380612,-6.368621306151785,7.435670420087931
0.21009363927752744,-2.719754693698011,1.0885820356480096,-6.289562485886653
-8.571672299069252,8.890348599509473,5.468260371802332,15.412904086362603
7.872454219630789,-3.9905860234116357,0.9068940749874717,-16.017543419998542
Loading