Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update test_gymnasium.py #378

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 84 additions & 1 deletion pypop7/benchmarks/test_gymnasium.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import numpy as np

from pypop7.benchmarks.gymnasium import Cartpole
from pypop7.benchmarks.gymnasium import Cartpole, Ant, HalfCheetah, Hopper, Humanoid, Swimmer, Walker2d
from pypop7.optimizers.es.maes import MAES as Controller


Expand All @@ -16,3 +16,86 @@ def testCartpole():
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())


def testAnt():
env = Ant()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())


def testHalfCheetah():
env = HalfCheetah()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())


def testHopper():
env = Hopper()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())

def testHumanoid():
env = Humanoid()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())


def testSwimmer():
env = Swimmer()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())


def testWalker2d():
env = Walker2d()
pro = {'fitness_function': env,
'ndim_problem': len(env.observation)*env.action_dim,
'lower_boundary': -10 * np.ones((len(env.observation) * env.action_dim,)),
'upper_boundary': 10 * np.ones((len(env.observation) * env.action_dim,))}
opt = {'max_function_evaluations': 7,
'seed_rng': 0,
'sigma': 3.0,
'verbose': 1}
controller = Controller(pro, opt)
print(controller.optimize())
Loading