conda env create -f environment.yml
conda activate petsird-analytic-simulator
cd python
python 01_analytic_petsird_lm_simulator.py
The simulation script creates a binary petsird LM file, but also many other files (e.g. a reference sensitivity image) that are all stored in the output directory
tree --charset=ascii my_lm_sim
my_lm_sim
|-- reference_histogram_mlem_50_epochs.npy
|-- reference_sensitivity_image.npy
|-- scanner_geometry.png
|-- sim_parameters.json
|-- simulated_lm_file.bin
`-- tof_profile_and_sensitivity_image.png
The simulation can be customized in many ways (number of counts to simulate, uniform or non-uniform efficiencies ...) via command line options.
These option can be listed via
python 01_analytic_petsird_lm_simulator.py -h
Note: The "reference" MLEM using histogrammed data is only run if a
value > 0 is given via --num_epochs_mlem
. Otherwise it is skipped to save
time.
python 02_lm_osem_recon_simulated_data.py
Thes command line optione for the LM OSEM recon script can be listed via
python 02_lm_osem_recon_simulated_data.py -h