Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@
"id": "83701c19",
"metadata": {},
"source": [
"# For LSTM model"
"# For LSTM and BERT model"
]
},
{
Expand All @@ -125,68 +125,23 @@
"outputs": [],
"source": [
"for meta_model in meta_model_names:\n",
" vocab_file = os.path.join(base_dir_meta_models,\"meta_\"+meta_model,'bbpe-vocab.json')\n",
" merges_file = os.path.join(base_dir_meta_models,\"meta_\"+meta_model,'bbpe-merges.txt')\n",
" tokenizer = TokenizerWrapperBPE(ByteLevelBPETokenizer(vocab=vocab_file,\n",
" merges=merges_file,\n",
" lowercase=True))\n",
" # load and sort out the config\n",
" config_file = os.path.join(base_dir_meta_models,\"meta_\"+meta_model,\"config.json\")\n",
" with open(config_file, 'r') as jfile:\n",
" config_dict = json.load(jfile)\n",
" config = ConfigMetaCAT()\n",
" for key, value in config_dict.items():\n",
" setattr(config, key, value['py/state']['__dict__'])\n",
" \n",
" \n",
" # load the meta_model\n",
" mc = MetaCAT.load(save_dir_path=os.path.join(base_dir_meta_models,\"meta_\"+meta_model))\n",
"\n",
" # changing parameters\n",
" mc.config.train['nepochs'] = 15\n",
"\n",
" save_dir_path= \"test_meta_\"+meta_model # Where to save the meta_model and results. \n",
" #Ideally this should replace the meta_models inside the modelpack\n",
"\n",
" # Initialise and train meta_model\n",
" mc = MetaCAT(tokenizer=tokenizer, embeddings=None, config=config)\n",
" # train the meta_model\n",
" results = mc.train_from_json(mctrainer_export_path, save_dir_path=save_dir_path)\n",
" \n",
" # Save results\n",
" json.dump(results['report'], open(os.path.join(save_dir_path,'meta_'+meta_model+'_results.json'), 'w'))"
]
},
{
"cell_type": "markdown",
"id": "91ff4e28",
"metadata": {},
"source": [
"# For BERT model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e255dda2",
"metadata": {},
"outputs": [],
"source": [
"for meta_model in meta_model_names:\n",
" # load and sort out the config\n",
" config_file = os.path.join(base_dir_meta_models,\"meta_\"+meta_model,\"config.json\")\n",
" with open(config_file, 'r') as jfile:\n",
" config_dict = json.load(jfile)\n",
" config = ConfigMetaCAT()\n",
" for key, value in config_dict.items():\n",
" setattr(config, key, value['py/state']['__dict__'])\n",
"\n",
" tokenizer = TokenizerWrapperBERT.load(os.path.join(base_dir_meta_models,\"meta_\"+meta_model), \n",
" config.model['model_variant'])\n",
" \n",
" # change model name if training BERT for the first time\n",
" config.model['model_name'] = 'bert'\n",
" \n",
" save_dir_path= \"test_meta_\"+meta_model # Where to save the meta_model and results. \n",
" #Ideally this should replace the meta_models inside the modelpack\n",
"\n",
" # Initialise and train meta_model\n",
" mc = MetaCAT(tokenizer=tokenizer, embeddings=None, config=config)\n",
" results = mc.train_from_json(mctrainer_export_path, save_dir_path=save_dir_path)"
]
},
{
"cell_type": "markdown",
"id": "ab23e424",
Expand Down
Loading
Loading