Skip to content
/ Pandora Public

A stereo matching framework that will help you design your stereo matching pipeline with state of the art performances.

License

Notifications You must be signed in to change notification settings

CNES/Pandora

Folders and files

NameName
Last commit message
Last commit date

Latest commit

337cf83 · Mar 25, 2025
Mar 24, 2025
Dec 19, 2023
May 13, 2024
Mar 25, 2025
Jan 7, 2025
Mar 24, 2025
Feb 14, 2025
Mar 24, 2025
Mar 25, 2021
Feb 14, 2025
Feb 21, 2025
Dec 14, 2023
Dec 19, 2023
Mar 25, 2025
Mar 25, 2025
Dec 14, 2022
Apr 12, 2021
Jun 30, 2020
Jun 30, 2020
Mar 24, 2025
Jan 7, 2025
Feb 14, 2025
Mar 24, 2025
Feb 21, 2025
Jan 7, 2025
Mar 24, 2025
Mar 20, 2025
Jun 4, 2024
Mar 24, 2025
Feb 15, 2025

Repository files navigation

Pandora

Pandora, a stereo matching framework

Python Contributions welcome License Documentation Github Action Codecov Binder

OverviewInstallQuick StartDocumentationCreditsRelatedReferences

Overview

From stereo rectified images to disparity map Pandora is working with cost volumes

Pandora is a stereo matching flexible framework made for research and production with state of the art performances:

  • Inspired from the (Scharstein et al., 2002) modular taxonomy, it allows one to emulate, analyse and hopefully improve state of the art stereo algorithms with a few lines of code.
  • For production purpose, Pandora have been created for the CNES & Airbus CO3D project processing chain, as CARS core stereo matching tool.

The tool is open for contributions, contact us to pandora AT cnes.fr !

Install

Pandora is available on Pypi and can be installed by:

pip install pandora

For stereo reconstruction, install pandora with following plugins:

# SGM regularization
pip install pandora[sgm]
#  MCCNN AI matching cost capability (heavy!)
pip install pandora[mccnn]

Quick Start

# Download configuration file
wget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/json_conf_files/a_local_block_matching.json

# Download data samples
wget https://raw.githubusercontent.com/CNES/Pandora/master/data_samples/images/cones.zip

# Uncompress data
unzip cones.zip

# Run pandora
pandora a_local_block_matching.json output_dir

# Left and right disparity maps are saved in output_dir: left_disparity.tif and right_disparity.tif

Documentation

To go further, please consult our online documentation.

Credits

  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, 47(1-3), 7-42.
  • Scharstein, D., & Szeliski, R. (2003, June). High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. (Vol. 1, pp. I-I).
  • 2003 Middleburry dataset (D. Scharstein & R. Szeliski, 2003).

Related

Plugin_LibSGM - Stereo Matching Algorithm plugin for Pandora
Plugin_MC-CNN - MC-CNN Neural Network plugin for Pandora
Pandora2D - CNES Image Registration framework based on Pandora, with 2D disparity maps. CARS - CNES 3D reconstruction software

References

Please cite the following papers when using Pandora:

  • Cournet, M., Sarrazin, E., Dumas, L., Michel, J., Guinet, J., Youssefi, D., Defonte, V., Fardet, Q., 2020. Ground-truth generation and disparity estimation for optical satellite imagery. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
  • Youssefi D., Michel, J., Sarrazin, E., Buffe, F., Cournet, M., Delvit, J., L’Helguen, C., Melet, O., Emilien, A., Bosman, J., 2020. Cars: A photogrammetry pipeline using dask graphs to construct a global 3d model. IGARSS - IEEE International Geoscience and Remote Sensing Symposium.