Skip to content

CISLab-HKUST/SDS_Mapper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An Implementation of Variational Mapper on SDS based on ThreeStudio

Implemented based on LODS and ThreeStudio

Updates

  • 29/2/2024: Code Released.

TODO List

  • Implement improved SDS Loss (Variational Mapper)

  • Apply improved SDS Loss on 3D Avatar Generation

  • ID Driven 3D Avatar Generation

Installation

  • Install PyTorch and torch vision
# torch1.12.1+cu113
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
# or torch2.0.0+cu118
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
  • Install dependencies:
pip install -r requirements.txt
  • Install 3DGS and Shap-E:
pip install ninja
pip install ./gaussiansplatting/submodules/diff-gaussian-rasterization
pip install ./gaussiansplatting/submodules/simple-knn

git clone https://github.com/openai/shap-e.git
cd shap-e
pip install -e .

If you have any problem with the installation, feel free to open a new issue here.

Quickstart

Run Variational Mapper + 3D Gaussian Splatting

python launch.py --config configs/t3aga-gs-mapper.yaml --train --gpu 0 system.prompt_processor.prompt="a DSLR image of a hamburger"

Credits

This code is built on the following open-source projects:

Credits from ThreeStudio

  • Lightning Framework for creating highly organized PyTorch code.
  • OmegaConf Flexible Python configuration system.
  • NerfAcc Plug-and-play NeRF acceleration.

About

Variantional Mapper Based on ThreeStudio

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published