Skip to content

A persistent key-value store that is embeddable and optimized for fast storage.

License

Notifications You must be signed in to change notification settings

CARV-ICS-FORTH/parallax

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parallax

Parallax is an LSM-based persistent key-value store designed for flash storage devices (SSDs, NVMe). Parallax reduces I/O amplification and increases CPU efficiency using the following mechanism. It categorizes key-value (KV) pairs into three size-based categories: Small, Medium, and Large. Then it applies a different policy for each category. It stores Small KV pairs inside the LSM levels (as RocksDB). It always performs key-value separation for KV pairs (as BlobDB), writing them in a value log, and it uses a garbage collection (GC) mechanism for the value log. For medium KV pairs, it uses a hybrid policy: It performs KV separation up to the semi-last levels and then stores them in place to bulk-free space without using GC.

Building Parallax

If you want to use Parallax check the Build guide.

Acknowledgements

If you want to cite us or find more details in the paper:

Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Anastasios Papagiannis, and Angelos Bilas. 2021. Parallax: Hybrid Key-Value Placement in LSM-based Key-Value Stores. In Proceedings of the ACM Symposium on Cloud Computing (SoCC '21). Association for Computing Machinery, New York, NY, USA, 305–318.
DOI:https://doi.org/10.1145/3472883.3487012

We thankfully acknowledge the support of the European Commission under the Horizon 2020 Framework Programme for Research and Innovation through the projects EVOLVE (Grant Agreement ID: 825061). This work is (also) partly supported by project EUPEX, which has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101033975. The JU receives support from the European Union's Horizon 2020 re-search and innovation programme and France, Germany, Italy, Greece, United Kingdom, Czech Republic, Croatia.