Skip to content

BuildingGym/hvacmarl6e43

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

19 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

HVAC-MARL 6e43

Multi-Agent Reinforcement Learning for HVAC Control in Buildings

πŸš€ Quick Start

Installation

# Clone the repository
git clone https://github.com/BuildingGym/hvacmarl6e43
cd hvacmarl6e43

# Install the package and dependencies
python -m pip install -e .
python -m pip install --extra-index-url https://test.pypi.org/simple git+https://github.com/NTU-CCA-HVAC-OPTIM-a842a748/EnergyPlus-OOEP
pip install -r requirements.txt

πŸ“ Project Structure

hvacmarl6e43/
β”œβ”€β”€ packages/
β”‚   β”œβ”€β”€ hvacmarl6e43/           # Core source code and utilities
β”‚   β”‚   β”œβ”€β”€ utils.py            # Utility functions
β”‚   β”‚   └── buildings/          # Building models (IDF files)
β”‚   └── hvacmarl6e43_notebooks/ # Experiment notebooks
β”‚       β”œβ”€β”€ run_baselines.ipynb # Run baseline experiments
β”‚       β”œβ”€β”€ run_monoagent.ipynb # Run single-agent RL experiments
β”‚       β”œβ”€β”€ run_multiagent.ipynb# Run multi-agent RL experiments
β”‚       β”œβ”€β”€ viz_metrics.ipynb   # Visualize experiment metrics
β”‚       └── viz_obs.ipynb       # Visualize observations
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ requirements.txt
└── README.md

▢️ Running Experiments

Main experiment scripts are located in packages/hvacmarl6e43_notebooks/:

Notebook Description
run_baselines.ipynb Run baseline experiments
run_monoagent.ipynb Run single-agent reinforcement learning experiments
run_multiagent.ipynb Run multi-agent reinforcement learning experiments
viz_metrics.ipynb Visualize experiment metrics
viz_obs.ipynb Visualize observation data
# Open with Jupyter or VS Code to run experiments

πŸ“„ Citation

If you find this work useful, please cite our paper:

@article{guan2025adaptive,
  title={Adaptive Multi-Agent HVAC Control for Thermal Comfort Using Multi-Agent PPO with Population-Based Training},
  author={Guan, Songze and Chen, Ruotian and Liu, Jiuwei and Zhou, Kate Qi and Dai, Xilei and Li, Wentai and Somasundaram, Sivanand and Chong, Alex and Lee, Christopher HT and Yuen, Chau},
  journal={Energy and Buildings},
  pages={116882},
  year={2025},
  publisher={Elsevier}
}

πŸ“œ License

MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •