Skip to content

The code of the paper 'Efficient Minimum k-Truss Search: A Decomposition-based Approach'

Notifications You must be signed in to change notification settings

Bklight999/MINKTRUSS

Repository files navigation

MINKTRUSS

This repository contains the codebase for the following manuscript: Efficient Minimum k-Truss Search: A Decomposition-based Approach

Dataset Preparation

Dataset $n$ $m$ $d_{avg}$ $k_{max}$
Slashdot 70,068 358,647 10.24 35
Epinions 75,879 405,740 10.6 33
UCLA 20,453 747,604 73 66
Harvard 15,126 824,617 109 42
Youtube 1,134,890 2,987,624 2.6 19
Google 875,713 4,322,051 9.87 44
Wiki 2,394,385 4,659,565 1.9 53
Flixster 2,523,386 7,918,801 6.28 30
Skitter 1,696,415 11,095,298 13.08 68
RGG 16,777,216 132,557,200 15 21

All datasets can be downloaded from the following links:

Compile the code

g++ main.cpp -o minktruss

This will generate an executable file minktruss

Run the code

./minktruss $alogirthm $input_file $output_file_path $k_lower $k_upper $query_id / the value of c (optional)

Note that, the algorithms mentioned in our paper are transfered to a series of numbers:

  • 0: MINKTRUSS-DSA
  • 1: MINKTRUSS-DSA-topc
  • 2: MINKTRUSS-DSA-query-based
  • 3: MINKTRUSS-ENUM
  • 4: MINKTRUSS-ENUM without MINKTRUSS-HEURISTIC

For example: if you want to run MINKTRUSS-DSA on RGG from k=10 to k=15, you can use the command:

./minktruss 0 RGG path/to/your_output_file 10 15

if you want to run MINKTRUSS-DSA on Epinions with k=5 and c= 100, you can use the command:

./minktruss 1 Epinions path/to/your_output_file 5 5 100

About

The code of the paper 'Efficient Minimum k-Truss Search: A Decomposition-based Approach'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages