Skip to content

BigelowLab/pspforecast

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d31e318 · Feb 8, 2025
Oct 2, 2024
Oct 2, 2024
Feb 8, 2025
Oct 2, 2024
Jun 28, 2021
Aug 9, 2024
Apr 27, 2023
Oct 2, 2024
Oct 2, 2024
Oct 2, 2024

Repository files navigation

pspforecast

Shellfish toxicity forecast serving package

Requirements

Installation

remotes::install_github("BigelowLab/pspforecast")

Reading the forecast database

Variables:

  • version - the version/configuration of the model used to make the prediction

  • ensemble_n - number of ensemble members used to generate prediction

  • location - the sampling station the forecast is for

  • date - the date the forecast was made on

  • name - site name

  • lat - latitude

  • lon - longitude

  • class_bins - the bins used to classify shellfish total toxicity (i.e. 0: 0-10, 1: 10-30, 2: 30-80, 3: >80)

  • forecast_date - the date the forecast is valid for (i.e. one week ahead of when it was made)

  • predicted_class - the predicted classification at the location listed on the forecast_date (in this case 0-3)

  • p_0 - class 0 probability

  • p_1 - class 1 probability

  • p_2 - class 2 probability

  • p_3 - class 3 probability

  • p3_sd - class 3 probability standard deviation

  • p_3_min - class 3 minimum probability (from ensemble run)

  • p_3_max - class 3 maximum probability (from ensemble run)

  • predicted_class - the predicted classification

predictions <- read_forecast(year = "2024") |>
  distinct()

glimpse(predictions)
## Rows: 464
## Columns: 19
## $ version             <chr> "v0.3.0", "v0.3.0", "v0.3.0", "v0.3.0", "v0.3.0", …
## $ ensemble_n          <dbl> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10…
## $ location            <chr> "PSP10.11", "PSP10.33", "PSP12.01", "PSP12.03", "P…
## $ date                <date> 2024-05-06, 2024-05-06, 2024-05-08, 2024-05-08, 2…
## $ name                <chr> "Ogunquit River", "Spurwink River", "Basin Pt.", "…
## $ lat                 <dbl> 43.25030, 43.56632, 43.73848, 43.73064, 43.79553, …
## $ lon                 <dbl> -70.59540, -70.27305, -70.04343, -70.02556, -69.94…
## $ class_bins          <chr> "0,10,30,80", "0,10,30,80", "0,10,30,80", "0,10,30…
## $ forecast_start_date <date> 2024-05-10, 2024-05-10, 2024-05-12, 2024-05-12, 2…
## $ forecast_end_date   <date> 2024-05-16, 2024-05-16, 2024-05-18, 2024-05-18, 2…
## $ p_0                 <dbl> 93, 100, 100, 99, 31, 3, 95, 94, 95, 95, 100, 99, …
## $ p_1                 <dbl> 6, 0, 0, 1, 44, 13, 4, 5, 4, 5, 0, 1, 0, 42, 9, 40…
## $ p_2                 <dbl> 1, 0, 0, 0, 18, 43, 0, 1, 0, 0, 0, 0, 0, 2, 0, 17,…
## $ p_3                 <dbl> 0, 0, 0, 0, 7, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3…
## $ p3_sd               <dbl> 2.537746e-02, 1.702311e-04, 5.835063e-07, 3.170006…
## $ p_3_min             <dbl> 2.803591e-02, 1.613240e-06, 4.298889e-09, 3.494154…
## $ p_3_max             <dbl> 1.114067e-01, 5.424280e-04, 1.839769e-06, 9.452227…
## $ predicted_class     <dbl> 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,…
## $ f_id                <chr> "PSP10.11_2024-05-06", "PSP10.33_2024-05-06", "PSP…

2024 Season Results

Metrics

  • tp - The model predicted class 3 and the following week’s measurement was class 3
  • fp - The model predicted class 3 and the following week’s measurement was not class 3
  • tn - The model predicted class 0,1,2 and the following week’s measurement was in class 0,1,2
  • fn - The model predicted class 0,1,2 and the following week’s measurement was class 3
  • accuracy - Measure of how many correct classifications were predicted
  • cl_accuracy - Considering predictions are those that correctly predicted toxicity above or below the closure limit or not
  • precision - TP/(TP+FP)
  • sensitivity - TP/(TP+FN)
  • specificity - TN/(TN+FP)
  • f_1
## # A tibble: 1 × 10
##      tp    fp    tn    fn accuracy cl_accuracy   f_1 precision sensitivity
##   <int> <int> <int> <int>    <dbl>       <dbl> <dbl>     <dbl>       <dbl>
## 1     2     4   397     7    0.717       0.973 0.267     0.333       0.222
## # ℹ 1 more variable: specificity <dbl>

2023 Season Results

predictions <- read_forecast(year = "2023")

Confusion Matrix

Probability of Closure-level Toxicity vs Measured Toxicity

Metrics

## # A tibble: 1 × 10
##      tp    fp    tn    fn accuracy cl_accuracy   f_1 precision sensitivity
##   <int> <int> <int> <int>    <dbl>       <dbl> <dbl>     <dbl>       <dbl>
## 1     0     0   550     0    0.993           1   NaN       NaN         NaN
## # ℹ 1 more variable: specificity <dbl>

2022 Season Results

Confusion Matrix

Probability of Closure-level Toxicity vs Measured Toxicity

Metrics

## # A tibble: 1 × 10
##      tp    fp    tn    fn accuracy cl_accuracy   f_1 precision sensitivity
##   <int> <int> <int> <int>    <dbl>       <dbl> <dbl>     <dbl>       <dbl>
## 1    16    20   603    12    0.799       0.951   0.5     0.444       0.571
## # ℹ 1 more variable: specificity <dbl>

Timing of initial closure-level predictions

2021 Season Results

Confusion Matrix

Probability of Closure-level Toxicity vs Measured Toxicity

Metrics

## # A tibble: 1 × 10
##      tp    fp    tn    fn accuracy cl_accuracy   f_1 precision sensitivity
##   <int> <int> <int> <int>    <dbl>       <dbl> <dbl>     <dbl>       <dbl>
## 1     2     3   463     0    0.938       0.994 0.571       0.4           1
## # ℹ 1 more variable: specificity <dbl>

Closure-level accuracy

Timing of initial closure-level predictions

Possible manuscript plot(s)

Last Updated

## [1] "2024-10-02"

About

Maine shellfish toxicity forecast serving package

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages