Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Bhavik-Ardeshna authored Nov 29, 2021
1 parent 7c1d855 commit 85e8cb9
Showing 1 changed file with 1 addition and 252 deletions.
253 changes: 1 addition & 252 deletions Question-Answering/README.md
Original file line number Diff line number Diff line change
@@ -1,18 +1,5 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
> Taken from [Hugging Face](https://github.com/huggingface/transformers)
# SQuAD

Expand Down Expand Up @@ -49,241 +36,3 @@ python run_qa.py \
--doc_stride 128 \
--output_dir /tmp/debug_squad/
```

Training with the previously defined hyper-parameters yields the following results:

```bash
f1 = 88.52
exact_match = 81.22
```

#### Distributed training

Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1:

```bash
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path bert-large-uncased-whole-word-masking \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \
--per_device_eval_batch_size=3 \
--per_device_train_batch_size=3 \
```

Training with the previously defined hyper-parameters yields the following results:

```bash
f1 = 93.15
exact_match = 86.91
```

This fine-tuned model is available as a checkpoint under the reference
[`bert-large-uncased-whole-word-masking-finetuned-squad`](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad).

#### Fine-tuning XLNet with beam search on SQuAD

This example code fine-tunes XLNet on both SQuAD1.0 and SQuAD2.0 dataset.

##### Command for SQuAD1.0:

```bash
python run_qa_beam_search.py \
--model_name_or_path xlnet-large-cased \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_cased_finetuned_squad/ \
--per_device_eval_batch_size=4 \
--per_device_train_batch_size=4 \
--save_steps 5000
```

##### Command for SQuAD2.0:

```bash
export SQUAD_DIR=/path/to/SQUAD

python run_qa_beam_search.py \
--model_name_or_path xlnet-large-cased \
--dataset_name squad_v2 \
--do_train \
--do_eval \
--version_2_with_negative \
--learning_rate 3e-5 \
--num_train_epochs 4 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./wwm_cased_finetuned_squad/ \
--per_device_eval_batch_size=2 \
--per_device_train_batch_size=2 \
--save_steps 5000
```

## With Accelerate

Based on the script `run_qa_no_trainer.py` and `run_qa_beam_search_no_trainer.py`.

Like `run_qa.py` and `run_qa_beam_search.py`, these scripts allow you to fine-tune any of the models supported on a
SQUAD or a similar dataset, the main difference is that this
script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like.

It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer
or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by
the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally
after installing it:

```bash
pip install accelerate
```

then

```bash
python run_qa_no_trainer.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ~/tmp/debug_squad
```

You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run

```bash
accelerate config
```

and reply to the questions asked. Then

```bash
accelerate test
```

that will check everything is ready for training. Finally, you cna launch training with

```bash
accelerate launch run_qa_no_trainer.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ~/tmp/debug_squad
```

This command is the same and will work for:

- a CPU-only setup
- a setup with one GPU
- a distributed training with several GPUs (single or multi node)
- a training on TPUs

Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.


## Results

Larger batch size may improve the performance while costing more memory.

##### Results for SQuAD1.0 with the previously defined hyper-parameters:

```python
{
"exact": 85.45884578997162,
"f1": 92.5974600601065,
"total": 10570,
"HasAns_exact": 85.45884578997162,
"HasAns_f1": 92.59746006010651,
"HasAns_total": 10570
}
```

##### Results for SQuAD2.0 with the previously defined hyper-parameters:

```python
{
"exact": 80.4177545691906,
"f1": 84.07154997729623,
"total": 11873,
"HasAns_exact": 76.73751686909581,
"HasAns_f1": 84.05558584352873,
"HasAns_total": 5928,
"NoAns_exact": 84.0874684608915,
"NoAns_f1": 84.0874684608915,
"NoAns_total": 5945
}
```

#### Fine-tuning BERT on SQuAD1.0 with relative position embeddings

The following examples show how to fine-tune BERT models with different relative position embeddings. The BERT model
`bert-base-uncased` was pretrained with default absolute position embeddings. We provide the following pretrained
models which were pre-trained on the same training data (BooksCorpus and English Wikipedia) as in the BERT model
training, but with different relative position embeddings.

* `zhiheng-huang/bert-base-uncased-embedding-relative-key`, trained from scratch with relative embedding proposed by
Shaw et al., [Self-Attention with Relative Position Representations](https://arxiv.org/abs/1803.02155)
* `zhiheng-huang/bert-base-uncased-embedding-relative-key-query`, trained from scratch with relative embedding method 4
in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658)
* `zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query`, fine-tuned from model
`bert-large-uncased-whole-word-masking` with 3 additional epochs with relative embedding method 4 in Huang et al.
[Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658)


##### Base models fine-tuning

```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path zhiheng-huang/bert-base-uncased-embedding-relative-key-query \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 512 \
--doc_stride 128 \
--output_dir relative_squad \
--per_device_eval_batch_size=60 \
--per_device_train_batch_size=6
```
Training with the above command leads to the following results. It boosts the BERT default from f1 score of 88.52 to 90.54.

```bash
'exact': 83.6802270577105, 'f1': 90.54772098174814
```

The change of `max_seq_length` from 512 to 384 in the above command leads to the f1 score of 90.34. Replacing the above
model `zhiheng-huang/bert-base-uncased-embedding-relative-key-query` with
`zhiheng-huang/bert-base-uncased-embedding-relative-key` leads to the f1 score of 89.51. The changing of 8 gpus to one
gpu training leads to the f1 score of 90.71.

##### Large models fine-tuning

```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_squad.py \
--model_name_or_path zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query \
--dataset_name squad \
--do_train \
--do_eval \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 512 \
--doc_stride 128 \
--output_dir relative_squad \
--per_gpu_eval_batch_size=6 \
--per_gpu_train_batch_size=2 \
--gradient_accumulation_steps 3
```
Training with the above command leads to the f1 score of 93.52, which is slightly better than the f1 score of 93.15 for
`bert-large-uncased-whole-word-masking`.

0 comments on commit 85e8cb9

Please sign in to comment.