Skip to content

Commit

Permalink
Merge pull request #96 from BerkeleyLab/read-training-configuration
Browse files Browse the repository at this point in the history
App reads training configuration JSON file
  • Loading branch information
rouson authored Nov 6, 2023
2 parents 7aebf60 + 8f40466 commit dabc96c
Show file tree
Hide file tree
Showing 23 changed files with 248 additions and 83 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
# NetCDF
*.nc

# Prerequisites
*.d

Expand Down
42 changes: 28 additions & 14 deletions app/train-cloud-microphysics.f90
Original file line number Diff line number Diff line change
Expand Up @@ -38,15 +38,16 @@ program train_cloud_microphysics

!! Internal dependencies;
use inference_engine_m, only : &
inference_engine_t, mini_batch_t, input_output_pair_t, tensor_t, trainable_engine_t, rkind, NetCDF_file_t, sigmoid_t
inference_engine_t, mini_batch_t, input_output_pair_t, tensor_t, trainable_engine_t, rkind, NetCDF_file_t, sigmoid_t, &
training_configuration_t
use ubounds_m, only : ubounds_t
implicit none

integer(int64) t_start, t_finish, clock_rate
type(command_line_t) command_line
type(file_t) plot_file
type(string_t), allocatable :: lines(:)
character(len=*), parameter :: plot_file_name = "cost.plt"
character(len=*), parameter :: plot_file_name = "cost.plt", training_configuration_json = "training_configuration.json "
character(len=:), allocatable :: base_name, stride_string, epochs_string, last_line
integer plot_unit, stride, num_epochs, previous_epoch
logical preexisting_plot_file
Expand Down Expand Up @@ -76,7 +77,7 @@ program train_cloud_microphysics
read(last_line,*) previous_epoch
end if

call read_train_write
call read_train_write(training_configuration_t(file_t(string_t(training_configuration_json))))

close(plot_unit)
call system_clock(t_finish)
Expand All @@ -85,7 +86,8 @@ program train_cloud_microphysics

contains

subroutine read_train_write
subroutine read_train_write(training_configuration)
type(training_configuration_t), intent(in) :: training_configuration
real, allocatable, dimension(:,:,:,:) :: &
pressure_in , potential_temperature_in , temperature_in , &
pressure_out, potential_temperature_out, temperature_out, &
Expand Down Expand Up @@ -195,7 +197,7 @@ subroutine read_train_write
else
close(network_unit)
print *,"Initializing a new network"
trainable_engine = new_engine(num_hidden_layers=6, nodes_per_hidden_layer=16, num_inputs=8, num_outputs=6, random=.false.)
trainable_engine = new_engine(training_configuration, randomize=.true.)
end if

print *,"Defining tensors from time steps 1 through", t_end, "with strides of", stride
Expand Down Expand Up @@ -229,7 +231,12 @@ subroutine read_train_write
end associate
end associate

associate(num_pairs => size(input_output_pairs), n_bins => 1) ! also tried n_bins => size(input_output_pairs)/10000
associate( &
num_pairs => size(input_output_pairs), &
n_bins => training_configuration%mini_batches(), &
adam => merge(.true., .false., training_configuration%optimizer_name() == "adam"), &
learning_rate => training_configuration%learning_rate() &
)
bins = [(bin_t(num_items=num_pairs, num_bins=n_bins, bin_number=b), b = 1, n_bins)]

print *,"Training network"
Expand All @@ -239,7 +246,7 @@ subroutine read_train_write

call shuffle(input_output_pairs) ! set up for stochastic gradient descent
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost)
call trainable_engine%train(mini_batches, cost, adam, learning_rate)
print *, epoch, minval(cost), maxval(cost), sum(cost)/size(cost)
write(plot_unit,*) epoch, minval(cost), maxval(cost), sum(cost)/size(cost)

Expand Down Expand Up @@ -267,19 +274,26 @@ subroutine read_train_write

end subroutine read_train_write

function new_engine(num_hidden_layers, nodes_per_hidden_layer, num_inputs, num_outputs, random) result(trainable_engine)
integer, intent(in) :: num_hidden_layers, nodes_per_hidden_layer, num_inputs, num_outputs
logical, intent(in) :: random
function new_engine(training_configuration, randomize) result(trainable_engine)
logical, intent(in) :: randomize
type(training_configuration_t), intent(in) :: training_configuration
type(trainable_engine_t) trainable_engine
real(rkind), allocatable :: w(:,:,:), b(:,:)
character(len=len('YYYMMDD')) date
integer l

call date_and_time(date)

associate(nodes => [num_inputs, [(nodes_per_hidden_layer, l = 1, num_hidden_layers)], num_outputs])
associate( &
nodes => training_configuration%nodes_per_layer(), &
activation => training_configuration%differentiable_activation_strategy(), &
residual_network => string_t(trim(merge("true ", "false", training_configuration%skip_connections()))) &
)
associate(max_nodes => maxval(nodes), layers => size(nodes))

allocate(w(max_nodes, max_nodes, layers-1), b(max_nodes, max_nodes))

if (random) then
if (randomize) then
call random_number(b)
call random_number(w)
else
Expand All @@ -288,8 +302,8 @@ function new_engine(num_hidden_layers, nodes_per_hidden_layer, num_inputs, num_o
end if

trainable_engine = trainable_engine_t( &
nodes = nodes, weights = w, biases = b, differentiable_activation_strategy = sigmoid_t(), metadata = &
[string_t("Microphysics"), string_t("Damian Rouson"), string_t("2023-08-18"), string_t("sigmoid"), string_t("false")] &
nodes = nodes, weights = w, biases = b, differentiable_activation_strategy = activation, metadata = &
[string_t("Microphysics"), string_t("Inference Engine"), string_t(date), activation%function_name(), residual_network] &
)
end associate
end associate
Expand Down
2 changes: 1 addition & 1 deletion example/fit-polynomials.f90
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ program train_polynomials
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
2 changes: 1 addition & 1 deletion example/learn-addition.f90
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ program train_polynomials
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
2 changes: 1 addition & 1 deletion example/learn-exponentiation.f90
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ program train_polynomials
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
2 changes: 1 addition & 1 deletion example/learn-microphysics-procedures.f90
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ program learn_microphysics_procedures
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
call system_clock(counter_end, clock_rate)

associate( &
Expand Down
2 changes: 1 addition & 1 deletion example/learn-multiplication.f90
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ program train_polynomials
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
2 changes: 1 addition & 1 deletion example/learn-power-series.f90
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ program train_polynomials
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
2 changes: 1 addition & 1 deletion example/learn-saturated-mixing-ratio.f90
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ program train_saturated_mixture_ratio
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
call system_clock(counter_end, clock_rate)

associate( &
Expand Down
8 changes: 5 additions & 3 deletions example/print-training-configuration.f90
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,12 @@ program print_training_configuration

associate(training_configuration => training_configuration_t( &
hyperparameters_t(mini_batches=10, learning_rate=1.5, optimizer = "adam"), &
network_configuration_t(skip_connections=.false., nodes_per_layer=[2,72,2], activation_function="sigmoid") &
network_configuration_t(skip_connections=.false., nodes_per_layer=[2,72,2], activation_name="sigmoid") &
))
associate(json_file => file_t(training_configuration%to_json()))
call json_file%write_lines()
associate(lines => training_configuration%to_json())
associate(json_file => file_t(lines))
call json_file%write_lines()
end associate
end associate
end associate
end program
2 changes: 1 addition & 1 deletion example/train-and-write.f90
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ program train_and_write
call random_number(random_numbers)
call shuffle(input_output_pairs, random_numbers)
mini_batches = [(mini_batch_t(input_output_pairs(bins(b)%first():bins(b)%last())), b = 1, size(bins))]
call trainable_engine%train(mini_batches, cost, adam=.true.)
call trainable_engine%train(mini_batches, cost, adam=.true., learning_rate=1.5)
print *,sum(cost)/size(cost)
end do
end block
Expand Down
4 changes: 2 additions & 2 deletions fpm.toml
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
name = "inference-engine"
version = "0.5.0"
license = "license"
author = "Damian Rouson, Tan Nguyen, Jordan Welsman"
author = "Damian Rouson, Tan Nguyen, Jordan Welsman, David Torres"
maintainer = "[email protected]"

[dependencies]
assert = {git = "https://github.com/sourceryinstitute/assert", tag = "1.5.0"}
sourcery = {git = "https://github.com/sourceryinstitute/sourcery", tag = "4.4.3"}
sourcery = {git = "https://github.com/sourceryinstitute/sourcery", tag = "4.4.4"}
netcdf-interfaces = {git = "https://github.com/rouson/netcdf-interfaces.git", branch = "implicit-interfaces"}
24 changes: 23 additions & 1 deletion src/inference_engine/hyperparameters_m.f90
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
module hyperparameters_m
use sourcery_m, only : string_t
use kind_parameters_m, only : rkind
implicit none

private
Expand All @@ -14,7 +15,10 @@ module hyperparameters_m
procedure :: to_json
procedure :: equals
generic :: operator(==) => equals
end type
procedure :: mini_batches
procedure :: optimizer_name
procedure :: learning_rate
end type

interface hyperparameters_t

Expand Down Expand Up @@ -48,6 +52,24 @@ elemental module function equals(lhs, rhs) result(lhs_equals_rhs)
logical lhs_equals_rhs
end function

elemental module function mini_batches(self) result(num_mini_batches)
implicit none
class(hyperparameters_t), intent(in) :: self
integer num_mini_batches
end function

elemental module function optimizer_name(self) result(identifier)
implicit none
class(hyperparameters_t), intent(in) :: self
type(string_t) identifier
end function


elemental module function learning_rate(self) result(rate)
implicit none
class(hyperparameters_t), intent(in) :: self
real(rkind) rate
end function
end interface

end module
12 changes: 12 additions & 0 deletions src/inference_engine/hyperparameters_s.f90
Original file line number Diff line number Diff line change
Expand Up @@ -63,4 +63,16 @@
]
end procedure

module procedure mini_batches
num_mini_batches = self%mini_batches_
end procedure

module procedure optimizer_name
identifier = string_t(self%optimizer_)
end procedure

module procedure learning_rate
rate = self%learning_rate_
end procedure

end submodule hyperparameters_s
28 changes: 25 additions & 3 deletions src/inference_engine/network_configuration_m.f90
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,14 @@ module network_configuration_m
private
logical :: skip_connections_ = .false.
integer, allocatable :: nodes_per_layer_(:)
character(len=:), allocatable :: activation_function_
character(len=:), allocatable :: activation_name_
contains
procedure :: to_json
procedure :: equals
generic :: operator(==) => equals
procedure :: activation_name
procedure :: nodes_per_layer
procedure :: skip_connections
end type

interface network_configuration_t
Expand All @@ -24,11 +27,11 @@ pure module function from_json(lines) result(network_configuration)
type(network_configuration_t) network_configuration
end function

pure module function from_components(skip_connections, nodes_per_layer, activation_function) result(network_configuration)
pure module function from_components(skip_connections, nodes_per_layer, activation_name) result(network_configuration)
implicit none
logical, intent(in) :: skip_connections
integer, intent(in) :: nodes_per_layer(:)
character(len=*), intent(in) :: activation_function
character(len=*), intent(in) :: activation_name
type(network_configuration_t) network_configuration
end function

Expand All @@ -48,6 +51,25 @@ elemental module function equals(lhs, rhs) result(lhs_equals_rhs)
logical lhs_equals_rhs
end function

elemental module function activation_name(self) result(string)
implicit none
class(network_configuration_t), intent(in) :: self
type(string_t) string
end function

pure module function nodes_per_layer(self) result(nodes)
implicit none
class(network_configuration_t), intent(in) :: self
integer, allocatable :: nodes(:)
end function

elemental module function skip_connections(self) result(using_skip)
implicit none
class(network_configuration_t), intent(in) :: self
logical using_skip
end function


end interface

end module
25 changes: 19 additions & 6 deletions src/inference_engine/network_configuration_s.f90
Original file line number Diff line number Diff line change
Expand Up @@ -5,23 +5,24 @@

character(len=*), parameter :: skip_connections_key = "skip connections"
character(len=*), parameter :: nodes_per_layer_key = "nodes per layer"
character(len=*), parameter :: activation_function_key = "activation function"
character(len=*), parameter :: activation_name_key = "activation function"

contains

module procedure from_components
network_configuration%skip_connections_ = skip_connections
network_configuration%nodes_per_layer_ = nodes_per_layer
network_configuration%activation_function_ = activation_function
network_configuration%activation_name_ = activation_name
end procedure

module procedure equals

call assert(allocated(lhs%activation_function_) .and. allocated(rhs%activation_function_), "network_configuration_s(equals): allocated activation_functions")
call assert(allocated(lhs%activation_name_) .and. allocated(rhs%activation_name_), &
"network_configuration_s(equals): allocated({lhs,rhs}%activation_name_)")

lhs_equals_rhs = &
lhs%skip_connections_ .eqv. rhs%skip_connections_ .and. &
lhs%activation_function_ == rhs%activation_function_ .and. &
lhs%activation_name_ == rhs%activation_name_ .and. &
all(lhs%nodes_per_layer_ == rhs%nodes_per_layer_)

end procedure
Expand All @@ -37,7 +38,7 @@
network_configuration_key_found = .true.
network_configuration%skip_connections_ = lines(l+1)%get_json_value(string_t(skip_connections_key), mold=.true.)
network_configuration%nodes_per_layer_ = lines(l+2)%get_json_value(string_t(nodes_per_layer_key), mold=[integer::])
network_configuration%activation_function_ = lines(l+3)%get_json_value(string_t(activation_function_key), mold=string_t(""))
network_configuration%activation_name_ = lines(l+3)%get_json_value(string_t(activation_name_key), mold=string_t(""))
return
end if
end do
Expand All @@ -60,9 +61,21 @@
string_t(indent // '"network configuration": {'), &
string_t(indent // indent // '"' // skip_connections_key // '" : ' // trim(adjustl(skip_connections_string )) // ','), &
string_t(indent // indent // '"' // nodes_per_layer_key // '" : [' // trim(adjustl(nodes_per_layer_string )) // '],'), &
string_t(indent // indent // '"' // activation_function_key // '" : "' // trim(adjustl(self%activation_function_)) // '"' ), &
string_t(indent // indent // '"' // activation_name_key // '" : "' // trim(adjustl(self%activation_name_)) // '"' ), &
string_t(indent // '}') &
]
end procedure

module procedure activation_name
string = self%activation_name_
end procedure

module procedure nodes_per_layer
nodes = self%nodes_per_layer_
end procedure

module procedure skip_connections
using_skip = self%skip_connections_
end procedure

end submodule network_configuration_s
Loading

0 comments on commit dabc96c

Please sign in to comment.