Trade on EMA Crossover #585
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Trade on EMA Crossover | |
on: | |
schedule: | |
- cron: '*/5 * * * *' # Run this workflow every 5 minutes | |
env: | |
PYTHON_VERSION: "3.10" | |
MARKETWATCH_USERNAME: ${{ secrets.MARKETWATCH_USERNAME }} | |
MARKETWATCH_PASSWORD: ${{ secrets.MARKETWATCH_PASSWORD }} | |
GAME_NAME: "marketwatchapistrategieema" | |
jobs: | |
trade: | |
runs-on: ubuntu-latest | |
steps: | |
- name: Checkout code | |
uses: actions/checkout@v4 | |
- name: Set up Python | |
uses: actions/setup-python@v5 | |
with: | |
python-version: ${{ env.PYTHON_VERSION }} | |
- name: Install dependencies | |
run: | | |
python -m pip install --upgrade pip | |
pip install pandas | |
pip install marketwatch | |
pip install yfinance | |
- name: Run trading script | |
env: | |
USERNAME: ${{ env.MARKETWATCH_USERNAME }} | |
PASSWORD: ${{ env.MARKETWATCH_PASSWORD }} | |
GAME_NAME: ${{ env.GAME_NAME }} | |
run: | | |
python - <<EOF | |
import time | |
import os | |
import pandas as pd | |
from datetime import datetime | |
from marketwatch import MarketWatch | |
username = os.environ.get('MARKETWATCH_USERNAME') | |
password = os.environ.get('MARKETWATCH_PASSWORD') | |
game_name = os.environ.get('GAME_NAME') | |
marketwatch = MarketWatch(username, password) | |
def calculate_ema(price_series, periods): | |
return price_series.ewm(span=periods, adjust=False).mean() | |
def trade_on_crossover(df, game_name, stock_symbol): | |
short_term = df['EMA_20'].iloc[-1] | |
long_term = df['EMA_80'].iloc[-1] | |
prev_short_term = df['EMA_20'].iloc[-2] | |
prev_long_term = df['EMA_80'].iloc[-2] | |
if short_term > long_term and prev_short_term <= prev_long_term: | |
marketwatch.buy(game_name, stock_symbol, 100) | |
elif short_term < long_term and prev_short_term >= prev_long_term: | |
marketwatch.sell(game_name, stock_symbol, 100) | |
def trade_multiple_stocks(stock_symbols): | |
price_data = {symbol: [] for symbol in stock_symbols} | |
for _ in range(160): | |
for symbol in stock_symbols: | |
ticker = yf.Ticker(symbol) # <-- Use yfinance here | |
price_data_point = ticker.history(period="1d")["Close"].iloc[-1] # <-- Fetch the last closing price | |
price_data[symbol].append(price_data_point) | |
if len(price_data[symbol]) > 150: | |
price_data[symbol].pop(0) | |
for symbol in stock_symbols: | |
df = pd.DataFrame(price_data[symbol], columns=['Close']) | |
for period in [20, 80]: | |
ema_column_name = f'EMA_{period}' | |
df[ema_column_name] = calculate_ema(df['Close'], period) | |
if len(df) >= 80: | |
trade_on_crossover(df, game_name, symbol) | |
time.sleep(60) | |
today = datetime.today().weekday() | |
if today >= 5: | |
exit(0) | |
tech_stocks = ['AAPL', 'GOOGL', 'MSFT'] | |
health_stocks = ['JNJ', 'MRK', 'PFE'] | |
utility_stocks = ['NEE', 'DUK', 'D'] | |
all_stocks = tech_stocks + health_stocks + utility_stocks | |
trade_multiple_stocks(all_stocks) | |
EOF |