This Library provides read access to the Artesian API
You can install the package directly from pip.
pip install artesian-sdk
Alternatively, to install this package go to the release page .
The Artesian.SDK instance can be configured using API-Key authentication
from Artesian import ArtesianConfig
cfg = ArtesianConfig("https://arkive.artesian.cloud/{tenantName}/", "{api-key}")
The following breaking changes has been introduced in v3 respect to v2.
Python >=3.8 is required. Python 3.7 is not supported due missing 'typing' features.
With Artesian-SDK v3 we introduced SubPkg to split the different part of the library. The new SubPkg are:
- Artesian.Query: contains all classes for querying Artesian data.
- Artesian.GMEPublicOffers: contains all classes for querying GME Public Offers
- (NEW) Artesian.MarketData: contains all classes to interact with the MarketData registry of Artesian. Register a new MarketData, change its Tags, etc. See documentation below.
To upgrade is enough to prefix the QueryService with 'Query.' or import it from Artesian.Query.
Were was used:
from Artesian import *
cfg = ArtesianConfig("https://arkive.artesian.cloud/{tenantName}/", "{api-key}")
qs = QueryService(cfg)
now you have to:
from Artesian import ArtesianConfig
from Artesian.Query import QueryService
cfg = ArtesianConfig("https://arkive.artesian.cloud/{tenantName}/", "{api-key}")
qs = QueryService(cfg)
To align the casing of the entries of the Enum, we adopted PascalCase to align it with the Artesian API.
Where before was used
.inGranularity(Granularity.HOUR) \
now is
.inGranularity(Granularity.Hour) \
Using the ArtesianConfig cfg
we create an instance of the QueryService which is used to create Actual, Versioned and Market Assessment time series queries
from Artesian import ArtesianConfig, Granularity
from Artesian.Query import QueryService, RelativeInterval
cfg = ArtesianConfig("https://arkive.artesian.cloud/{tenantName}/", "{api-key}")
qs = QueryService(cfg)
data = qs.createActual() \
.forMarketData([100011484,100011472,100011477,100011490,100011468,100011462,100011453]) \
.inAbsoluteDateRange("2018-01-01","2018-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Hour) \
.execute()
print(data)
To construct an Actual Time Series Extraction the following must be provided.
Actual Query | Description |
---|---|
Market Data ID | Provide a market data id or set of market data id's to query |
Time Granularity | Specify the granularity type |
Time Extraction Window | An extraction time window for data to be queried |
Go to Time Extraction window section
from Artesian import ArtesianConfig, Granularity
from Artesian.Query import QueryService, RelativeInterval
qs = QueryService(cfg)
q = qs.createVersioned() \
.forMarketData([100042422,100042283,100042285,100042281,100042287,100042291,100042289]) \
.inAbsoluteDateRange("2018-01-01","2018-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Hour)
print(q)
ret = q.forMUV().execute()
print(ret)
ret = q.forLastNVersions(2).execute()
print(ret)
ret = q.forLastOfDays("2019-03-12","2019-03-16").execute()
print(ret)
ret = q.forLastOfDays("P0Y0M-2D","P0Y0M2D").execute()
print(ret)
ret = q.forLastOfDays("P0Y0M-2D").execute()
print(ret)
ret = q.forLastOfMonths("2019-03-12","2019-03-16").execute()
print(ret)
ret = q.forLastOfMonths("P0Y-1M0D","P0Y1M0D").execute()
print(ret)
ret = q.forLastOfMonths("P0Y-1M0D").execute()
print(ret)
ret = q.forVersion("2019-03-12T14:30:00").execute()
print(ret)
ret = q.forMostRecent("2019-03-12","2019-03-16").execute()
print(ret)
ret = q.forMostRecent("2019-03-12T12:30:05","2019-03-16T18:42:30").execute()
print(ret)
ret = q.forMostRecent("P0Y0M-2D","P0Y0M2D").execute()
print(ret)
ret = q.forMostRecent("P0Y0M-2D").execute()
print(ret)
ret = q.forMostRecent("2019-03-12","2019-03-16").execute()
print(ret)
ret = q.forMostRecent("P0Y-1M0D","P0Y1M0D").execute()
print(ret)
ret = q.forMostRecent("P0Y-1M0D").execute()
print(ret)
To construct a Versioned Time Series Extraction the following must be provided.
Versioned Query | Description |
---|---|
Market Data ID | Provide a market data id or set of market data id's to query |
Time Granularity | Specify the granularity type |
Versioned Time Extraction Window | Versioned extraction time window |
Time Extraction Window | An extraction time window for data to be queried |
Go to Time Extraction window section
from Artesian import ArtesianConfig
from Artesian.Query import QueryService, RelativeInterval
qs = QueryService(cfg)
data = qs.createMarketAssessment() \
.forMarketData([100000032,100000043]) \
.forProducts(["D+1","Feb-18"]) \
.inAbsoluteDateRange("2018-01-01","2018-01-02") \
.execute()
print(data)
To construct a Market Assessment Time Series Extraction the following must be provided.
Mas Query | Description |
---|---|
Market Data ID | Provide a market data id or set of market data id's to query |
Product | Provide a product or set of products |
Time Extraction Window | An extraction time window for data to be queried |
Go to Time Extraction window section
from Artesian import ArtesianConfig
from Artesian.Query import QueryService, RelativeInterval
qs = QueryService(cfg)
data = qs.createBidAsk() \
.forMarketData([100000032,100000043]) \
.forProducts(["D+1","Feb-18"]) \
.inAbsoluteDateRange("2018-01-01","2018-01-02") \
.execute()
print(data)
To construct a Bid Ask Time Series Extraction the following must be provided.
Mas Query | Description |
---|---|
Market Data ID | Provide a market data id or set of market data id's to query |
Product | Provide a product or set of products |
Time Extraction Window | An extraction time window for data to be queried |
Go to Time Extraction window section
from Artesian import ArtesianConfig
from Artesian.Query import QueryService, RelativeInterval
qs = QueryService(cfg)
data = qs.createAuction() \
.forMarketData([100011484,100011472,100011477,100011490,100011468,100011462,100011453]) \
.inAbsoluteDateRange("2018-01-01","2018-01-02") \
.inTimeZone("UTC") \
.execute()
print(data)
To construct an Auction Time Series Extraction the following must be provided.
Auction Query | Description |
---|---|
Market Data ID | Provide a market data id or set of market data id's to query |
Time Extraction Window | An extraction time window for data to be queried |
Go to Time Extraction window section
Extraction window types for queries.
Date Range
.inAbsoluteDateRange("2018-08-01", "2018-08-10")
Relative Interval
.inRelativeInterval(RelativeInterval.RollingWeek)
Period
.inRelativePeriod("P5D")
Period Range
.inRelativePeriodRange("P-3D", "P10D")
All extraction types (Actual,Versioned, Market Assessment and BidAsk) have an optional filler strategy.
var versionedSeries = qs
.createVersioned() \
.forMarketData([100000001]) \
.forLastNVersions(1) \
.inGranularity(Granularity.Day) \
.inAbsoluteDateRange(new Date("2018-1-1"), new Date("2018-1-10")) \
.withFillLatestValue("P5D") \
.execute()
Use 'Null' to fill the missing timepoint with 'None' values.
.withFillNull()
Use 'None' to not fill at all: timepoints are not returned if not present.
.withFillNone()
Custom Value can be provided for each MarketDataType.
Custom Value for Actual extraction type.
.withFillCustomValue(123)
Custom Value for BidAsk extraction type.
.withFillCustomValue(
bestBidPrice = 15.0,
bestAskPrice = 20.0,
bestBidQuantity = 30.0,
bestAskQuantity = 40.0,
lastPrice = 50.0,
lastQuantity = 60.0)
Custom Value for Market Assessment extraction type.
.withFillCustomValue(
settlement = 10.0,
open = 20.0,
close = 30.0,
high = 40.0,
low = 50.0,
volumePaid = 60.0,
volueGiven = 70.0,
volume = 80.0)
Custom Value for Versioned extraction type.
.withFillCustomValue(123)
Latest Value to propagate the latest value, not older than a certain threshold only if there is a value at the end of the period.
.withFillLatestValue("P5D")
.withFillLatestValue("P5D", "False")
Latest Value to propagate the latest value, not older than a certain threshold even if there's no value at the end.
.withFillLatestValue("P5D", "True")
Using MarketDataService is possible to query all the Versions and all the Products curves which has been written in a MarketData.
from Artesian.MarketData import MarketDataService
mds = MarketDataService(cfg)
To list MarketData curves
page = 1
pageSize = 100
res = mds.readCurveRange(100042422, page, pageSize, versionFrom="2016-12-20" , versionTo="2019-03-12")
Using MarketDataService is possible to query and search the MarketData collection with faceted results. Supports paging, filtering and free text.
from Artesian.MarketData import MarketDataService
mds = MarketDataService(cfg)
To list MarketData curves
page = 1
pageSize = 100
searchText = "Riconsegnato_"
filters = {"ProviderName": ["SNAM", "France"]}
sorts=["MarketDataId asc"]
doNotLoadAdditionalInfo=True
res = mds.searchFacet(page, pageSize, searchText, filters, sorts, doNotLoadAdditionalInfo)
Artesian support Query over GME Public Offers which comes in a custom and dedicated format.
from Artesian.GMEPublicOffers import GMEPublicOfferService, Market, Purpose, Status, Zone, Scope, UnitType, GenerationType, BAType
qs = GMEPublicOfferService(cfg)
data = qs.createQuery() \
.forDate("2020-04-01") \
.forMarket([Market.MGP]) \
.forStatus(Status.ACC) \
.forPurpose(Purpose.BID) \
.forZone([Zone.NORD]) \
.withPagination(1,100) \
.execute()
print(data)
To construct a GME Public Offer Extraction the following must be provided.
GME Public Offer Query | Description |
---|---|
Time Extraction Window | An extraction time window for data to be queried |
Market | Provide a market or set of markets to query |
Status | Provide a status or set of statuses to query |
Purpose | Provide a purpose or set of purposes to query |
Zone | Provide a zone to query |
The unit of measure conversion functionality allows users to request a conversion of units for Market Data that was registered using a different unit. This feature is supported only for Actual and Versioned Time Series.
Supported units are defined in the CommonUnitOfMeasure object and conform to ISO/IEC 80000 (i.e., kW
, MW
, kWh
, MWh
, m
, km
, day
, min
, h
, s
, mo
, yr
).
Note: Duration-based units are interpreted with the following fixed assumptions:
1 day = 24 hours
1 mo = 30 days
1 yr = 365 days
Additional supported units include currency codes in 3-letter format as per ISO 4217:2015 (e.g., EUR
, USD
, JPY
). These are not part of CommonUnitOfMeasure and must be specified as regular strings.
Units of measure can also be composite, using the {a}/{b} syntax, where both {a} and {b} are either units from CommonUnitOfMeasure or ISO 4217 currency codes.
Unit conversion is based on the assumption that each unit of measure can be decomposed into a "BaseDimension", which represents a polynomial of base SI units (m
, s
, kg
, etc.) and currencies (EUR
, USD
, etc.).
A unit of measure is represented as a value in BaseDimension UnitOdMeasure.
Example:
10 Wh
= 10 kg·m²·s⁻³
Conversion is allowed when the BaseDimensions match exactly, i.e., the same set of base units raised to the same exponents.
In Artesian, units that differ only in the time dimension are also potentially convertible, as the time dimension can be inferred from the data’s time interval.
Converting W
to Wh
:
• W
→ BaseDimension: k·m²·s⁻³
• Wh
→ BaseDimension: kg·m²·s⁻²
• 1 h = 3600 s
Conversion Steps:
10 W = 10 kg·m²/s³
1 h = 3600 s
10 kg·m²/s³ × 3600 s = 36000 kg·m²/s² = 10 Wh
The UnitOfMeasure is defined during registration:
mkd = MarketData.MarketDataEntityInput(
providerName = "TestProviderName",
marketDataName = "TestMarketDataName",
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.ActualTimeSerie,
originalTimezone="CET",
aggregationRule=AggregationRule.SumAndDivide,
UnitOfMeasure = CommonUnitOfMeasure.kW
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
In the QueryService, there are two supported methods related to unit of measure handling during extraction:
- UnitOfMeasure Conversion
- Aggregation Rule Override
To convert a UnitOfMeasure during data extraction, use the .inUnitOfMeasure()
method. This function converts the data from the unit defined at MarketData registration to the target unit you specify in the query.
qs = QueryService(cfg)
data = qs.createActual() \
.forMarketData([100011484]) \
.inAbsoluteDateRange("2024-01-01","2024-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Day) \
.inUnitOfMeasure(CommonUnitOfMeasure.MW) \
.execute()
By default, the aggregation rule used during extraction is the one defined at registration. However, you can override it if needed. The conversion is always applied before aggregation.
AggregationRule can be overrided using the .withAggregationRule()
method in QueryService.
qs = QueryService(cfg)
data = qs.createActual() \
.forMarketData([100011484]) \
.inAbsoluteDateRange("2024-01-01","2024-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Day) \
.withAggregationRule(AggregationRule.AverageAndReplicate) \
.execute()
Sometimes, especially when converting from a consumption unit (e.g., MWh
) to a power unit (e.g., MW
), the registered aggregation rule (e.g., SumAndDivide
) may not make sense for the new unit.
If you don’t override the aggregation rule, the conversion may produce invalid or misleading results.
data = qs.createActual() \
.forMarketData([100011484]) \
.inAbsoluteDateRange("2024-01-01","2024-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Day) \
.inUnitOfMeasure(CommonUnitOfMeasure.MWh) \
.withAggregationRule(AggregationRule.AverageAndReplicate) \
.execute()
data = qs.createActual() \
.forMarketData([100011484]) \
.inAbsoluteDateRange("2024-01-01","2024-01-02") \
.inTimeZone("UTC") \
.inGranularity(Granularity.Day) \
.inUnitOfMeasure(CommonUnitOfMeasure.MWh / CommonUnitOfMeasure.day) \
.withAggregationRule(AggregationRule.AverageAndReplicate) \
.execute()
Use the CheckConversion
method to verify whether a list of input units can be converted into a specifified target unit:
from Artesian import ArtesianConfig, MarketData
from Artesian.MarketData import CommonUnitOfMeasure
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
inputUnitsOfMeasure = [CommonUnitOfMeasure.kW, CommonUnitOfMeasure.kWh, "EUR/MWh"]
targetUnitOfMeasure = CommonUnitOfMeasure.MW
checkConversionResult = mkservice.checkConversion(inputUnitsOfMeasure , targetUnitOfMeasure)
Returned Object: CheckConversionResult
- TargetUnitOfMeasure: "
kW
" - ConvertibleInputUnitsOfMeasure: [ "
MW
", "kW/s
" ] - NotConvertibleInputUnitsOfMeasure: [ "
s
" ]
Extraction options for GME Public Offer queries.
.forDate("2020-04-01")
.forPurpose(Purpose.BID)
.forStatus(Status.ACC)
.forOperator(["Operator_1", "Operator_2"])
.forUnit(["UP_1", "UP_2"])
.forMarket([Market.MGP])
.forScope([Scope.ACC, Scope.RS])
.forBAType([BAType.NETT, BAType.NERV])
.forZone([Zone.NORD])
.forUnitType([UnitType.UCV, UnitType.UPV])
.forGenerationType(GenerationType.GAS)
.withPagination(1,10)
.inUnitOfMeasure(CommonUnitOfMeasure.kWh)
.withAggregationRule(AggregationRule.SumAndDivide)
Using the MarketDataService is possible to register MarketData and write curves into it using the UpsertData method.
Depending on the Type of the MarketData, the UpsertData should be composed as per example below.
from Artesian import ArtesianConfig, Granularity, MarketData
from Artesian.MarketData import AggregationRule
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.ActualTimeSerie,
originalTimezone="CET",
aggregationRule=AggregationRule.AverageAndReplicate,
tags={
'TestSDKPython': ['PythonValue2']
},
derivedCfg=DerivedCfg(
version=1,
derivedAlgorithm=DerivedAlgorithm.Coalesce,
orderedReferencedMarketDataIds=[10000, 10001, 10002],
),
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
data = MarketData.UpsertData(mkdid, 'CET',
rows=
{
datetime(2020,1,1): 42.0,
datetime(2020,1,2): 43.0,
},
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(data)
DerivedCfg can be of algorithm type: Coalesce, Sum, Muv.
Updating the DerivedCfg can be performed with updateDerivedConfiguration
on MarketDataService. A validation will be done on the existing DerivedCfg of the MarketData, that should be not null and with same type as the one used for the update.
derivedCfgUpdate = DerivedCfg(
version=1,
derivedAlgorithm=DerivedAlgorithm.Coalesce,
orderedReferencedMarketDataIds=[10002, 10001, 10000],
)
marketDataUpdated = mkdservice.updateDerivedConfiguration(
registeredDerived.marketDataId,
derivedCfgUpdate,
False)
In case we want to write an hourly (or lower) time series the timezone for the upsert data must be UTC:
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Hour,
type=MarketData.MarketDataType.ActualTimeSerie,
originalTimezone="CET",
aggregationRule=AggregationRule.AverageAndReplicate,
tags={
'TestSDKPython': ['PythonValue2']
}
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
data = MarketData.UpsertData(mkdid, 'UTC',
rows=
{
datetime(2020,1,1,5,0,0): 42.0,
datetime(2020,1,2,6,0,0): 43.0,
datetime(2020,1,2,7,0,0): 44.0,
datetime(2020,1,2,8,0,0): 45.0,
datetime(2020,1,2,9,0,0): 46.0,
},
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(data)
from Artesian import ArtesianConfig, Granularity, MarketData
from Artesian.MarketData import AggregationRule
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.VersionedTimeSerie,
originalTimezone="CET",
aggregationRule=AggregationRule.AverageAndReplicate,
tags={
'TestSDKPython': ['PythonValue2']
}
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
data = MarketData.UpsertData(mkdid, 'CET',
rows=
{
datetime(2020,1,1): 42.0,
datetime(2020,1,2): 43.0,
},
version= datetime(2020,1,3,12,0),
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(data)
from Artesian import ArtesianConfig, Granularity, MarketData
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.MarketAssessment,
originalTimezone="CET",
tags={
'TestSDKPython': ['PythonValue2']
}
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
marketAssessment = MarketData.UpsertData(MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME'), 'CET',
marketAssessment=
{
datetime(2020,1,1):
{
"Feb-20": MarketData.MarketAssessmentValue(open=10.0, close=11.0),
"Mar-20": MarketData.MarketAssessmentValue(open=20.0, close=21.0)
},
datetime(2020,1,2):
{
"Feb-20": MarketData.MarketAssessmentValue(open=11.0, close=12.0),
"Mar-20": MarketData.MarketAssessmentValue(open=21.0, close=22.0)
}
},
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(marketAssessment)
from Artesian import ArtesianConfig,Granularity,MarketData
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.BidAsk,
originalTimezone="CET",
tags={
'TestSDKPython': ['PythonValue2']
}
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
bidAsk = MarketData.UpsertData(MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME'), 'CET',
bidAsk={
datetime(2020,1,1):
{
"Feb-20":MarketData.BidAskValue(bestBidPrice=15.0, lastQuantity=14.0),
"Mar-20":MarketData.BidAskValue(bestBidPrice=25.0, lastQuantity=24.0)
},
datetime(2020,1,2):
{
"Feb-20":MarketData.BidAskValue(bestBidPrice=15.0, lastQuantity=14.0),
"Mar-20":MarketData.BidAskValue(bestBidPrice=25.0, lastQuantity=24.0)
}
},
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(bidAsk)
from Artesian import ArtesianConfig,Granularity,MarketData
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
mkd = MarketData.MarketDataEntityInput(
providerName = mkdid.provider,
marketDataName = mkdid.name,
originalGranularity=Granularity.Day,
type=MarketData.MarketDataType.Auction,
originalTimezone="CET",
tags={
'TestSDKPython': ['PythonValue2']
}
)
registered = mkservice.readMarketDataRegistryByName(mkdid.provider, mkdid.name)
if (registered is None):
registered = mkservice.registerMarketData(mkd)
auctionRows = MarketData.UpsertData(MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME'), 'CET',
auctionRows={
datetime(2020,1,1): MarketData.AuctionBids(datetime(2020,1,1),
bid=[
MarketData.AuctionBidValue(11.0, 12.0),
MarketData.AuctionBidValue(13.0, 14.0),
],
offer=[
MarketData.AuctionBidValue(21.0, 22.0),
MarketData.AuctionBidValue(23.0, 24.0),
]
)
},
downloadedAt=datetime(2020,1,3).replace(tzinfo=tz.UTC)
)
mkservice.upsertData(auctionRows)
Using the MarketDataService is possible to delete MarketData and its curves.
Using the MarketDataService is possible to delete MarketData and its curves.
from Artesian import ArtesianConfig
from Artesian.MarketData import MarketDataService
cfg = ArtesianConfg()
mkservice = MarketDataService(cfg)
mkservice.deleteMarketData(100042422)
Depending on the Type of the MarketData, the DeletData should be composed as per example below. The timezone is optional: for DateSeries if provided must be equal to MarketData OriginalTimezone Default:MarketData OriginalTimezone. For TimeSeries Default:CET
from Artesian import ArtesianConfig, Granularity, MarketData
from Artesian.MarketData import AggregationRule
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
deleteData = MarketData.DeleteData(
ID=mkdid,
timezone='CET',
rangeStart=datetime(2020, 1, 1, 6),
rangeEnd=datetime(2020, 1, 1, 18),
)
mkdservice.deleteData(deleteData)
from Artesian import ArtesianConfig, Granularity, MarketData
from Artesian.MarketData import AggregationRule
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
deleteData = MarketData.DeleteData(
ID=mkdid,
timezone='CET',
rangeStart=datetime(2020, 1, 1, 0),
rangeEnd=datetime(2020, 1, 7, 0),
version=datetime(2020, 1, 1, 0)
)
mkdservice.deleteData(deleteData)
from Artesian import ArtesianConfig, Granularity, MarketData
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
deleteData = MarketData.DeleteData(
ID= mkdid,
timezone='CET',
rangeStart=datetime(2020, 1, 1, 0),
rangeEnd=datetime(2020, 1, 3, 0),
product=["Feb-20"]
)
mkdservice.deleteData(deleteData)
from Artesian import ArtesianConfig, Granularity, MarketData
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
deleteData = MarketData.DeleteData(
ID= mkdid,
timezone='CET',
rangeStart=datetime(2020, 1, 1, 0),
rangeEnd=datetime(2020, 1, 3, 0),
product=["Feb-20"]
)
mkdservice.deleteData(deleteData)
from Artesian import ArtesianConfig, Granularity, MarketData
from Artesian.MarketData import AggregationRule
from datetime import datetime
from dateutil import tz
cfg = ArtesianConfg()
mkservice = MarketData.MarketDataService(cfg)
mkdid = MarketData.MarketDataIdentifier('PROVIDER', 'MARKETDATANAME')
deleteData = MarketData.DeleteData(
ID=mkdid,
timezone='CET',
rangeStart=datetime(2020, 1, 1, 6),
rangeEnd=datetime(2020, 1, 1, 18),
)
mkdservice.deleteData(deleteData)
Artesian SDK uses asyncio internally, this causes a conflict with Jupyter. You can work around this issue by add the following at the beginning of the notebook.
!pip install nest_asyncio
import nest_asyncio
nest_asyncio.apply()