-
Notifications
You must be signed in to change notification settings - Fork 3
Cutouts Training Code #141
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,43 @@ | ||
| import os | ||
|
|
||
| from torchvision.transforms import v2 | ||
|
|
||
| project_name = "arcaff-v2-qs-ia-a-b-bg" | ||
|
|
||
| batch_size = 32 | ||
| num_workers = 12 | ||
| num_epochs = 200 | ||
| patience = 10 | ||
| pretrained = True | ||
| learning_rate = 1e-5 | ||
|
|
||
| model_name = "beit_base_patch16_224" | ||
| gpu_index = 0 | ||
| device = "cuda:" + str(gpu_index) | ||
|
|
||
| data_folder = os.getenv("ARCAFF_DATA_FOLDER", "../../data/") | ||
| dataset_folder = "arccnet-cutout-dataset-v20240715" | ||
| df_file_name = "cutout-mcintosh-catalog-v20240715.parq" | ||
|
|
||
| label_mapping = { | ||
| "QS": "QS", | ||
| "IA": "IA", | ||
| "Alpha": "Alpha", | ||
| "Beta": "Beta", | ||
| "Beta-Delta": "Beta", | ||
| "Beta-Gamma": "Beta-Gamma", | ||
| "Beta-Gamma-Delta": "Beta-Gamma", | ||
| "Gamma": None, | ||
| "Gamma-Delta": None, | ||
| } | ||
|
|
||
| train_transforms = v2.Compose( | ||
| [ | ||
| v2.RandomHorizontalFlip(), | ||
| v2.RandomVerticalFlip(), | ||
| v2.RandomResizedCrop(size=(224, 224), scale=(0.9, 0.9), antialias=True), | ||
| v2.RandomRotation(35), | ||
| ] | ||
| ) | ||
|
|
||
| val_transforms = None | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,99 @@ | ||
| import argparse | ||
| from pathlib import Path | ||
|
|
||
| import numpy as np | ||
| import requests | ||
| import timm | ||
| import torch | ||
| from comet_ml import API | ||
|
|
||
| from astropy.io import fits | ||
|
|
||
| from arccnet.models import utilities as ut | ||
|
|
||
|
|
||
| def download_model(api, workspace, model_name, model_version, model_path): | ||
| model_comet = api.get_model(workspace, model_name) | ||
| model_assets = model_comet.get_assets(model_version) | ||
| for asset in model_assets: | ||
| if asset["fileName"] == "model-data/comet-torch-model.pth": | ||
| model_url = asset["s3Link"] | ||
| break | ||
| if model_path.exists(): | ||
| print(f"Model file already exists at {model_path}. \nSkipping download.") | ||
| else: | ||
| response = requests.get(model_url) | ||
| if response.status_code == 200: | ||
| with open(model_path, "wb") as f: | ||
| f.write(response.content) | ||
| print(f"Model downloaded successfully and saved to {model_path}") | ||
| else: | ||
| print(f"Failed to download model. Status code: {response.status_code}") | ||
|
|
||
|
|
||
| def preprocess_fits_data(fits_file_path, hardtanh=True, target_height=224, target_width=224): | ||
| with fits.open(fits_file_path, memmap=True) as img_fits: | ||
| image_data = np.array(img_fits[1].data, dtype=np.float32) | ||
| image_data = np.nan_to_num(image_data, nan=0.0) | ||
| if hardtanh: | ||
| image_data = ut.hardtanh_transform_npy(image_data, divisor=800, min_val=-1.0, max_val=1.0) | ||
| image_data = ut.pad_resize_normalize(image_data, target_height=target_height, target_width=target_width) | ||
| return torch.from_numpy(image_data).unsqueeze(0) | ||
|
|
||
|
|
||
| def run_inference(model, fits_file_path, device): | ||
| model.eval() | ||
| with torch.no_grad(): | ||
| data = preprocess_fits_data(fits_file_path) | ||
| data = data.unsqueeze(0).to(device) # dimensions: (batch_size, channels, height, width) | ||
| output = model(data) | ||
| return output.cpu().numpy() | ||
|
|
||
|
|
||
| def main(args): | ||
| api = API() | ||
| script_dir = Path(__file__).parent.resolve() | ||
| output_dir = script_dir.parent / "trained_models" | ||
| output_dir.mkdir(parents=True, exist_ok=True) | ||
| model_path = output_dir / f"{args.model_name}-{args.model_version}.pth" | ||
|
Comment on lines
+55
to
+58
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think should be using the generic configuration stuff here |
||
|
|
||
| download_model(api, args.workspace, args.model_name, args.model_version, model_path) | ||
|
|
||
| # Find number of classes from project name | ||
| substring_after_v2 = args.project_name.split("arcaff-v2-")[1] | ||
| values = substring_after_v2.split("-") | ||
| num_classes = len(values) | ||
|
|
||
| # Create the model | ||
| model = timm.create_model(args.model_name, num_classes=num_classes, in_chans=1) | ||
| ut.replace_activations(model, torch.nn.ReLU, torch.nn.LeakyReLU, negative_slope=0.01) | ||
|
|
||
| # Load the model state | ||
| device = "cpu" | ||
| model.load_state_dict(torch.load(model_path, map_location=device, weights_only=True)) | ||
|
|
||
| # Run inference | ||
| print(f"FITS file: {args.fits_file_path}") | ||
| result = run_inference(model, args.fits_file_path, device) | ||
| predicted_class = np.argmax(result) | ||
| probabilities = torch.softmax(torch.tensor(result), dim=1).numpy() | ||
|
|
||
| print("Normalized Predictions:", probabilities) | ||
| print("Predicted class:", ut.index_to_label[predicted_class]) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| parser = argparse.ArgumentParser(description="Run inference on FITS data using a pre-trained model.") | ||
| parser.add_argument( | ||
| "--fits_file_path", | ||
| type=str, | ||
| default="/ARCAFF/data/arccnet-cutout-dataset-v20240715/fits/19970125_235945_QS-5_MDI.fits", | ||
| help="Path to the FITS file.", | ||
| ) | ||
| parser.add_argument("--project_name", type=str, default="arcaff-v2-qs-ia-a-b-bg", help="Name of the project.") | ||
| parser.add_argument("--workspace", type=str, default="arcaff", help="Workspace name in Comet.ml.") | ||
| parser.add_argument("--model_name", type=str, default="resnet10t", help="Model name.") | ||
| parser.add_argument("--model_version", type=str, default="1.0.0", help="Model version.") | ||
|
|
||
| args = parser.parse_args() | ||
| main(args) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,10 @@ | ||
| The train.py script requires: | ||
| - Two folders, | ||
| - ARCCnet/arccnet/models/temp | ||
| - ARCCnet/arccnet/models/weights | ||
| are needed to store temporary files. | ||
| - An environment variable named ARCAFF_DATA_FOLDER must be set, pointing to the location where the dataset is stored. | ||
| Default is ../../data | ||
| - Before logging training to Comet ML, run | ||
| import comet_ml | ||
| comet_ml.login() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,90 @@ | ||
| import os | ||
| import argparse | ||
|
|
||
| import torch | ||
| from comet_ml import Experiment | ||
|
|
||
| import arccnet.models.cutouts.config as config | ||
| import arccnet.models.utilities as ut | ||
|
|
||
| # Initialize argument parser | ||
| parser = argparse.ArgumentParser(description="Training script with configurable options.") | ||
| parser.add_argument("--model_name", type=str, help="Timm model name") | ||
| parser.add_argument("--batch_size", type=int, help="Batch size for training.") | ||
| parser.add_argument("--num_workers", type=int, help="Number of workers for data loading and preprocessing.") | ||
| parser.add_argument("--num_epochs", type=int, help="Number of epochs for training.") | ||
| parser.add_argument("--patience", type=int, help="Patience for early stopping.") | ||
| parser.add_argument("--learning_rate", type=float, help="Learning rate for optimizer.") | ||
| parser.add_argument("--gpu_index", type=int, help="Index of the GPU to use.") | ||
| parser.add_argument("--data_folder", type=str, help="Path to the data folder.") | ||
| parser.add_argument("--dataset_folder", type=str, help="Path to the dataset folder.") | ||
| parser.add_argument("--df_file_name", type=str, help="Name of the dataframe file.") | ||
|
|
||
| args = parser.parse_args() | ||
|
|
||
| # Override config settings with arguments if provided | ||
| if args.model_name is not None: | ||
| config.model_name = args.model_name | ||
| if args.batch_size is not None: | ||
| config.batch_size = args.batch_size | ||
| if args.num_epochs is not None: | ||
| config.num_epochs = args.num_epochs | ||
| if args.patience is not None: | ||
| config.patience = args.patience | ||
| if args.learning_rate is not None: | ||
| config.learning_rate = args.learning_rate | ||
| if args.gpu_index is not None: | ||
| config.gpu_index = args.gpu_index | ||
| config.device = f"cuda:{args.gpu_index}" | ||
| if args.data_folder is not None: | ||
| config.data_folder = args.data_folder | ||
| if args.dataset_folder is not None: | ||
| config.dataset_folder = args.dataset_folder | ||
| if args.df_file_name is not None: | ||
| config.df_file_name = args.df_file_name | ||
| if args.num_workers is not None: | ||
| config.num_workers = args.num_workers | ||
|
|
||
| run_id, weights_dir = ut.generate_run_id(config) | ||
|
|
||
| run_comet = Experiment(project_name=config.project_name, workspace="arcaff") | ||
|
|
||
| run_comet.add_tags([config.model_name]) | ||
| run_comet.log_parameters( | ||
| { | ||
| "model_name": config.model_name, | ||
| "batch_size": config.batch_size, | ||
| "GPU": f"GPU{config.gpu_index}_{torch.cuda.get_device_name()}", | ||
| "num_epochs": config.num_epochs, | ||
| "patience": config.patience, | ||
| } | ||
| ) | ||
|
|
||
| run_comet.log_code(config.__file__) | ||
| run_comet.log_code(ut.__file__) | ||
|
|
||
| print("Making dataframe...") | ||
| df, AR_df = ut.make_dataframe(config.data_folder, config.dataset_folder, config.df_file_name) | ||
|
|
||
| df, df_du = ut.undersample_group_filter( | ||
| df, config.label_mapping, long_limit_deg=60, undersample=True, buffer_percentage=0.1 | ||
| ) | ||
| fold_df = ut.split_data(df_du, label_col="grouped_labels", group_col="number", random_state=42) | ||
| df = ut.assign_fold_sets(df, fold_df) | ||
| print("done.") | ||
| print("Starting Training...") | ||
|
|
||
| (avg_test_loss, test_accuracy, test_precision, test_recall, test_f1, cm_test, report_df) = ut.train_model( | ||
| config, df, weights_dir, experiment=run_comet | ||
| ) | ||
|
|
||
| print("Logging assets...") | ||
| script_dir = os.path.dirname(ut.__file__) | ||
| save_path = os.path.join(script_dir, "temp", "working_dataset.png") | ||
| ut.make_classes_histogram( | ||
| df_du["grouped_labels"], title="Dataset (Grouped Undersampled)", y_off=100, figsz=(7, 5), save_path=save_path | ||
| ) | ||
| run_comet.log_image(save_path) | ||
|
|
||
| run_comet.log_asset_data(df.to_csv(index=False), name="dataset.csv") | ||
| print("done.") |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
How valid is this without also flipping magnetic field?