Skip to content

Commit

Permalink
M4 rev (#44)
Browse files Browse the repository at this point in the history
* Added etrainee_m4_utils

* import of our modules changed to etrainee_m4_utils

* Fixed missing fig 3

* Added links to citations + added our isprs annals paper from 2022

---------

Co-authored-by: jdvorak <[email protected]>
  • Loading branch information
jakub-dvorak-geo and jdvorak authored Nov 15, 2023
1 parent 3f6e162 commit 8c2fc87
Showing 1 changed file with 11 additions and 9 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -137,20 +137,22 @@ Proceed with [Temporal vs. spatial and spectral resolution](../05_specific_resol

## References

Adams, J. B., Smith, M. O., Johnson, P. E. (1986). Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research: Solid Earth, 91(B8), 8098-8112. https://doi.org/10.1029/JB091iB08p08098
Adams, J. B., Smith, M. O., Johnson, P. E. (1986). Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research: Solid Earth, 91(B8), 8098-8112. [https://doi.org/10.1029/JB091iB08p08098](https://doi.org/10.1029/JB091iB08p08098)

Chang, C. I. (2000). An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Transactions on information theory, 46(5), 1927-1932. https://ieeexplore.ieee.org/abstract/document/857802
Dvořák, J., Potůčková, M., Treml, V. (2022). Weakly supervised learning for treeline ecotone classification based on aerial orthoimages and an ancillary DSM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022. [https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022](https://doi.org/10.5194/isprs-annals-V-3-2022-33-2022)

Cooper, S., Okujeni, A., Jänicke, C., Clark, M., van der Linden, S., Hostert, P. (2020). Disentangling fractional vegetation cover: Regression-based unmixing of simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment, 246, 111856. https://doi.org/10.1016/j.rse.2020.111856
Chang, C. I. (2000). An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Transactions on information theory, 46(5), 1927-1932. [https://ieeexplore.ieee.org/abstract/document/857802](https://ieeexplore.ieee.org/abstract/document/857802)

Du, Y., Chang, C. I., Ren, H., Chang, C. C., Jensen, J. O., D’Amico, F. M. (2004). New hyperspectral discrimination measure for spectral characterization. Optical engineering, 43(8), 1777-1786. https://doi.org/10.1117/1.1766301
Cooper, S., Okujeni, A., Jänicke, C., Clark, M., van der Linden, S., Hostert, P. (2020). Disentangling fractional vegetation cover: Regression-based unmixing of simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment, 246, 111856. [https://doi.org/10.1016/j.rse.2020.111856](https://doi.org/10.1016/j.rse.2020.111856)

Kale, K. V., Solankar, M. M., Nalawade, D. B., Dhumal, R. K., Gite, H. R. (2017). A research review on hyperspectral data processing and analysis algorithms. Proceedings of the national academy of sciences, India section a: physical sciences, 87, 541-555. https://doi.org/10.1007/s40010-017-0433-y
Du, Y., Chang, C. I., Ren, H., Chang, C. C., Jensen, J. O., D’Amico, F. M. (2004). New hyperspectral discrimination measure for spectral characterization. Optical engineering, 43(8), 1777-1786. [https://doi.org/10.1117/1.1766301](https://doi.org/10.1117/1.1766301)

Martínez, P. J., Pérez, R. M., Plaza, A., Aguilar, P. L., Cantero, M. C., Plaza, J. (2006). Endmember extraction algorithms from hyperspectral images. http://hdl.handle.net/2122/1963
Kale, K. V., Solankar, M. M., Nalawade, D. B., Dhumal, R. K., Gite, H. R. (2017). A research review on hyperspectral data processing and analysis algorithms. Proceedings of the national academy of sciences, India section a: physical sciences, 87, 541-555. [https://doi.org/10.1007/s40010-017-0433-y](https://doi.org/10.1007/s40010-017-0433-y)

Okujeni, A., Jänicke, C., Cooper, S., Frantz, D., Hostert, P., Clark, M., ... van der Linden, S. (2021). Multi-season unmixing of vegetation class fractions across diverse Californian ecoregions using simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment, 264, 112558. https://doi.org/10.1016/j.rse.2021.112558
Martínez, P. J., Pérez, R. M., Plaza, A., Aguilar, P. L., Cantero, M. C., Plaza, J. (2006). Endmember extraction algorithms from hyperspectral images. [http://hdl.handle.net/2122/1963](http://hdl.handle.net/2122/1963)

Yuhas, R. H., Goetz, A. F., Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop. https://ntrs.nasa.gov/citations/19940012238
Okujeni, A., Jänicke, C., Cooper, S., Frantz, D., Hostert, P., Clark, M., ... van der Linden, S. (2021). Multi-season unmixing of vegetation class fractions across diverse Californian ecoregions using simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment, 264, 112558. [https://doi.org/10.1016/j.rse.2021.112558](https://doi.org/10.1016/j.rse.2021.112558)

Wang, X., Liu, J., Chi, W., Wang, W., & Ni, Y. (2023). Advances in Hyperspectral Image Classification Methods with Small Samples: A Review. Remote Sensing, 15(15), 3795. https://doi.org/10.3390/rs15153795
Yuhas, R. H., Goetz, A. F., Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop. [https://ntrs.nasa.gov/citations/19940012238](https://ntrs.nasa.gov/citations/19940012238)

Wang, X., Liu, J., Chi, W., Wang, W., & Ni, Y. (2023). Advances in Hyperspectral Image Classification Methods with Small Samples: A Review. Remote Sensing, 15(15), 3795. [https://doi.org/10.3390/rs15153795](https://doi.org/10.3390/rs15153795)

0 comments on commit 8c2fc87

Please sign in to comment.