Small utility to collect, parse, and filter upcoming company stock earnings reports
pip install -r requirements.txt
python ./stock_earnings_parser/main.py \
--start-date="31/10/2016" \
--analysts-min=3 \
--analysts-max=9 \
--expected-max=2 \
--expected-min=0.5 \
--surprise-delta-min=2 \
--surprise-delta-max=10The result should look like this:
date: 2016-Oct-31
ARE: http://www.nasdaq.com/earnings/report/are [SKIP]
AWI: http://www.nasdaq.com/earnings/report/awi [OK]
CAH: http://www.nasdaq.com/earnings/report/cah [OK]
DKL: http://www.nasdaq.com/earnings/report/dkl [OK]
DK: http://www.nasdaq.com/earnings/report/dk [SKIP]
ENH: http://www.nasdaq.com/earnings/report/enh [OK]
EURN: http://www.nasdaq.com/earnings/report/eurn [OK]
GGP: http://www.nasdaq.com/earnings/report/ggp [SKIP]
MIC: http://www.nasdaq.com/earnings/report/mic [SKIP]
APTS: http://www.nasdaq.com/earnings/report/apts [SKIP]
PEG: http://www.nasdaq.com/earnings/report/peg [SKIP]
VET: http://www.nasdaq.com/earnings/report/vet [SKIP]
VNO: http://www.nasdaq.com/earnings/report/vno [SKIP]
=========
== AWI ==
=========
{ 'analysts': 3,
'estimated': 0.74,
'history': [ { 'actual': 0.56,
'expected': 0.51,
'quarter': 'Jun2016',
'reported': '07/29/2016',
'surprise': 9.8}],
'meta': { 'symbol': 'AWI',
'url': 'http://www.nasdaq.com/earnings/report/awi'},
'premarket': True}- Install requirements:
pip install -r requirements.txt - Install test requirements:
pip install -r requirements_test.txt - Run tests:
pytest tests/