-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
142 lines (114 loc) · 3.47 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "corecrt_math_defines.h"
#include "nlohmann/json.hpp"
// osqp-eigen
#include "OsqpEigen/OsqpEigen.h"
// eigen
#include <Eigen/Dense>
#include <iostream>
#include <fstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "lane_optimizer.hpp"
int main()
{
LaneOptimizer::P_weight w;
w.l = 1.0;
w.dl = 20.0;
w.ddl = 1.0;
w.dddl = 1.0;
w.l_end = 1.0;
w.dl_end = 1.0;
w.ddl_end = 1.0;
w.l_ref = 10.0;
LaneOptimizer::A_setups a;
a.border = true;
a.heading = true;
a.kappa = false;
a.jerk = false;
a.start = true;
a.ddl2dl = true;
a.dl2l = true;
auto getLane = []() -> std::unordered_map <std::string, std::vector<double>> {
std::unordered_map <std::string, std::vector<double>> lane;
std::ifstream raw("../raw.csv");
std::string li;
std::vector<double>buf;
std::vector<std::string>name = { "S", "l_ref", "l_upper", "l_lower" };
for (int i = 0; i < name.size(); ++i) {
lane.emplace(name[i], buf);
}
while (std::getline(raw, li)) {
std::string num = "";
int i = 0;
for (auto w : li) {
if (w != ',') {
num += w;
}
else {
lane[name[i++]].push_back(std::stod(num));
num = "";
}
}
lane[name[i++]].push_back(std::stod(num));
}
return lane;
};
auto getCfg = [&w, &a]() {
nlohmann::json b;
std::ifstream cfg("../cfg.json");
cfg >> b;
w.l = b.at("weight").at("l");
w.dl = b.at("weight").at("dl");
w.ddl = b.at("weight").at("ddl");
w.dddl = b.at("weight").at("dddl");
w.l_end = b.at("weight").at("l_end");
w.dl_end = b.at("weight").at("dl_end");
w.ddl_end = b.at("weight").at("ddl_end");
w.l_ref = b.at("weight").at("l_ref");
a.border = b.at("constrain").at("border");
a.heading = b.at("constrain").at("heading");
a.kappa = b.at("constrain").at("kappa");
a.jerk = b.at("constrain").at("jerk");
a.start = b.at("constrain").at("start");
a.ddl2dl = b.at("constrain").at("ddl2dl");
a.dl2l = b.at("constrain").at("dl2l");
};
auto lane = getLane();
getCfg();
LaneOptimizer::OptimizationData data;
auto construct_lane = [&]()->LaneOptimizer::OptimizationData {
LaneOptimizer::OptimizationData data;
double ds_last = 0;
for (int i = 0; i < lane["S"].size(); ++i) {
double ds = 0.0;
if (i < lane["S"].size() - 1) ds = lane["S"][i + 1] - lane["S"][i];
else ds = ds_last;
SamplePoint sp(ds, lane["l_ref"][i], lane["l_upper"][i], lane["l_lower"][i], 0.0, 0.0);
data.sample.push_back(sp);
ds_last = ds;
}
data.acc_kappa = 1000.0;
data.l_start = lane["l_ref"][0];
data.l_end = lane["l_ref"].back();
data.dl_start = 0.0;
data.dl_end = 0.0;
data.ddl_start = 0.0;
data.ddl_end = 0.0;
return data;
};
LaneOptimizer optmzer(w, a);
auto ans = optmzer.optimize(construct_lane());
//for (auto s : ans.s) {
// std::cout << s << std::endl;
//}
std::ofstream out("../ans.csv");
for (int i = 0; i < lane["S"].size(); ++i) {
out << lane["S"][i] << "," <<
lane["l_ref"][i] << "," <<
lane["l_upper"][i] << "," <<
lane["l_lower"][i] << "," <<
ans.s[i] << "," <<
std::endl;
}
}