forked from youngeun1209/NeuroTalk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
255 lines (195 loc) · 9.87 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import torch
from models import models as networks
from models.models_HiFi import Generator as model_HiFi
from modules import DTW_align, GreedyCTCDecoder, AttrDict, RMSELoss
from modules import mel2wav_vocoder, perform_STT
from utils import data_denorm, word_index
import torch.nn as nn
import torch.nn.functional as F
from NeuroTalkDataset import myDataset
import time
import torch.optim.lr_scheduler
import numpy as np
import torchaudio
from torchmetrics import CharErrorRate
import json
import argparse
from train import train as eval
import wavio
def save_test_all(args, test_loader, models, save_idx=None):
model_g = models[0].eval()
# model_d = models[1].eval()
vocoder = models[2].eval()
model_STT = models[3].eval()
decoder_STT = models[4]
save_idx=0
for i, (input, target, target_cl, voice, data_info) in enumerate(test_loader):
input = input.cuda()
target = target.cuda()
voice = torch.squeeze(voice,dim=-1).cuda()
labels = torch.argmax(target_cl,dim=1)
with torch.no_grad():
# run the mdoel
output = model_g(input)
mel_out = DTW_align(output,target)
target = data_denorm(target, data_info[0], data_info[1])
mel_out = data_denorm(mel_out, data_info[0], data_info[1])
gt_label=[]
for k in range(len(target)):
gt_label.append(args.word_label[labels[k].item()])
wav_target = mel2wav_vocoder(target, vocoder, 1)
wav_recon = mel2wav_vocoder(mel_out, vocoder, 1)
wav_target = torch.reshape(wav_target, (len(wav_target),wav_target.shape[-1]))
wav_recon = torch.reshape(wav_recon, (len(wav_recon),wav_recon.shape[-1]))
wav_target = torchaudio.functional.resample(wav_target, args.sample_rate_mel, args.sample_rate_STT)
wav_recon = torchaudio.functional.resample(wav_recon, args.sample_rate_mel, args.sample_rate_STT)
if wav_target.shape[1] != voice.shape[1]:
p = voice.shape[1] - wav_target.shape[1]
p_s = p//2
p_e = p-p_s
wav_target = F.pad(wav_target, (p_s,p_e))
if wav_recon.shape[1] != voice.shape[1]:
p = voice.shape[1] - wav_recon.shape[1]
p_s = p//2
p_e = p-p_s
wav_recon = F.pad(wav_recon, (p_s,p_e))
##### STT Wav2Vec 2.0
transcript_recon = perform_STT(wav_recon, model_STT, decoder_STT, gt_label, 1)
wav_target = wav_target.cpu().detach().numpy()
wav_recon = wav_recon.cpu().detach().numpy()
voice = voice.cpu().detach().numpy()
for batch_idx in range(len(input)):
str_tar = args.word_label[labels[batch_idx].item()].replace("|", ",")
str_tar = str_tar.replace(" ", ",")
str_pred = transcript_recon[batch_idx].replace("|", ",")
str_pred = str_pred.replace(" ", ",")
# Audio save
if args.task[0] == 'I':
title = "Recon_IM_{}-pred_{}".format(str_tar, str_pred)
wavio.write(args.savevoice + "/" + "%03d_"%(save_idx+1) + title + ".wav",
wav_recon[batch_idx], args.sample_rate_STT, sampwidth=1)
else:
title = "Recon_SP_{}-pred_{}".format(str_tar, str_pred)
wavio.write(args.savevoice + "/" + "%03d_"%(save_idx+1) + title + ".wav",
wav_recon[batch_idx], args.sample_rate_STT, sampwidth=1)
title = "Target"
wavio.write(args.savevoice + "/" + "%03d_"%(save_idx+1) + title + ".wav",
wav_target[batch_idx], args.sample_rate_STT, sampwidth=1)
title = "Original"
wavio.write(args.savevoice + "/" + "%03d_"%(save_idx+1) + title + ".wav",
voice[batch_idx], args.sample_rate_STT, sampwidth=1)
save_idx=save_idx+1
def main(args):
device = torch.device(f'cuda:{args.gpuNum[0]}' if torch.cuda.is_available() else "cpu")
torch.cuda.set_device(device) # change allocation of current GPU
print ('Current cuda device ', torch.cuda.current_device()) # check
print(torch.cuda.device_count())
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
# define generator
config_file = os.path.join(args.model_config, 'config_g.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h_g = AttrDict(json_config)
model_g = networks.Generator(h_g).cuda()
args.sample_rate_mel = args.sampling_rate
# define discriminator
config_file = os.path.join(args.model_config, 'config_d.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h_d = AttrDict(json_config)
model_d = networks.Discriminator(h_d).cuda()
# vocoder HiFiGAN
# LJ_FT_T2_V3/generator_v3,
config_file = os.path.join(os.path.split(args.vocoder_pre)[0], 'config.json')
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
vocoder = model_HiFi(h).cuda()
state_dict_g = torch.load(args.vocoder_pre) #, map_location=args.device)
vocoder.load_state_dict(state_dict_g['generator'])
# STT Wav2Vec
bundle = torchaudio.pipelines.HUBERT_ASR_LARGE
model_STT = bundle.get_model().cuda()
args.sample_rate_STT = bundle.sample_rate
decoder_STT = GreedyCTCDecoder(labels=bundle.get_labels())
args.word_index, args.word_length = word_index(args.word_label, bundle)
# Parallel setting
model_g = nn.DataParallel(model_g, device_ids=args.gpuNum)
model_d = nn.DataParallel(model_d, device_ids=args.gpuNum)
vocoder = nn.DataParallel(vocoder, device_ids=args.gpuNum)
model_STT = nn.DataParallel(model_STT, device_ids=args.gpuNum)
# loss function
criterion_recon = RMSELoss().cuda()
criterion_adv = nn.BCELoss().cuda()
criterion_ctc = nn.CTCLoss().cuda()
criterion_cl = nn.CrossEntropyLoss().cuda()
CER = CharErrorRate().cuda()
# Directory
saveDir = args.logDir + args.sub + '_' + args.task
# create the directory if not exist
if not os.path.exists(saveDir):
os.mkdir(saveDir)
args.savevoice = saveDir + '/savevoice'
if not os.path.exists(args.savevoice):
os.mkdir(args.savevoice)
loc_g = os.path.join(saveDir, 'savemodel', 'BEST_checkpoint_g.pt')
loc_d = os.path.join(saveDir, 'savemodel', 'BEST_checkpoint_d.pt')
if os.path.isfile(loc_g):
print("=> loading checkpoint '{}'".format(loc_g))
checkpoint_g = torch.load(loc_g, map_location='cpu')
model_g.load_state_dict(checkpoint_g['state_dict'])
print('Load {}th epoch model'.format(checkpoint_g['epoch']))
else:
print("=> no checkpoint found at '{}'".format(loc_g))
if os.path.isfile(loc_d):
print("=> loading checkpoint '{}'".format(loc_d))
checkpoint_d = torch.load(loc_d, map_location='cpu')
model_d.load_state_dict(checkpoint_d['state_dict'])
print('Load {}th epoch model'.format(checkpoint_d['epoch']))
else:
print("=> no checkpoint found at '{}'".format(loc_d))
# Data loader define
testset = myDataset(mode=1, data=args.dataLoc+'/'+args.sub, task=args.task, recon=args.recon) # file='./EEG_EC_Data_csv/train.txt'
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False, num_workers=4*len(args.gpuNum), pin_memory=True)
epoch = 0
start_time = time.time()
print('Processing Evaluation ...')
Te_losses = eval(args, test_loader,
(model_g, model_d, vocoder, model_STT, decoder_STT),
(criterion_recon, criterion_ctc, criterion_adv, criterion_cl, CER),
([],[]),
epoch,
False)
save_test_all(args, test_loader, (model_g, model_d, vocoder, model_STT, decoder_STT), Te_losses)
time_taken = time.time() - start_time
print("Time: %.2f\n"%time_taken)
if __name__ == '__main__':
dataDir = './sample_data'
logDir = './TrainResult'
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--vocoder_pre', type=str, default='./pretrained_model/UNIVERSAL_V1/g_02500000', help='pretrained vocoder file path')
parser.add_argument('--trained_model', type=str, default='./pretrained_model', help='config for G & D folder path')
parser.add_argument('--model_config', type=str, default='./models', help='config for G & D folder path')
parser.add_argument('--dataLoc', type=str, default=dataDir)
parser.add_argument('--config', type=str, default='./config.json')
parser.add_argument('--logDir', type=str, default=logDir)
parser.add_argument('--gpuNum', type=list, default=[2])
parser.add_argument('--batch_size', type=int, default=13)
parser.add_argument('--sub', type=str, default='sub1')
parser.add_argument('--task', type=str, default='SpokenEEG')
parser.add_argument('--recon', type=str, default='Y_mel')
parser.add_argument('--unseen', type=str, default='stop')
args = parser.parse_args()
with open(args.config) as f:
t_args = argparse.Namespace()
t_args.__dict__.update(json.load(f))
args = parser.parse_args(namespace=t_args)
main(args)