-
Notifications
You must be signed in to change notification settings - Fork 715
/
Copy pathgeneration_args.py
50 lines (40 loc) · 2.24 KB
/
generation_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from dataclasses import dataclass, field, asdict
from typing import Optional, Dict, Any
@dataclass
class GenerationArguments:
max_length: Optional[int] = field(default=512, metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."})
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of new tokens to be generated in evaluation or prediction loops if predict_with_generate is set."})
min_new_tokens : Optional[int] = field(default=None, metadata={"help": "Minimum number of new tokens to generate."})
# Generation strategy
do_sample: Optional[bool] = field(default=False)
num_beams: Optional[int] = field(default=1)
num_beam_groups: Optional[int] = field(default=1)
penalty_alpha: Optional[float] = field(default=None)
use_cache: Optional[bool] = field(default=True)
# Hyperparameters for logit manipulation
temperature: Optional[float] = field(default=1.0)
top_k: Optional[int] = field(default=50)
top_p: Optional[float] = field(default=1.0)
typical_p: Optional[float] = field(default=1.0)
diversity_penalty: Optional[float] = field(default=0.0)
repetition_penalty: Optional[float] = field(default=1.0)
length_penalty: Optional[float] = field(default=1.0)
no_repeat_ngram_size: Optional[int] = field(default=0)
def to_dict(self) -> Dict[str, Any]:
args = asdict(self)
if args.get("max_new_tokens", -1) > 0:
args.pop("max_length", None)
else:
args.pop("max_new_tokens", None)
return args
@dataclass
class InferArguments:
mode: str = field(default='w')
gen_mode: str = field(default='greedy', metadata={"help": "gen_mode."})
swap_space: int = field(default=4, metadata={"help": "CPU swap space size (GiB) per GPU"})
gpu_memory_utilization: float = field(default=0.90, metadata={"help": "the percentage of GPU memory to be used for the model executor"})
input_file: str = field(default=None, metadata={"help": "Path to the input file."})
output_file: str = field(default=None, metadata={"help": "Path to the output file."})
batch_size: int = field(default=16, metadata={"help": "batch size"})