-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
136 lines (118 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
"""counting_tf.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/10yhlmiksbKMMTGvACrKp8lEgF8WNtxxO
"""
import tensorflow as tf
import os
import sys
#from utils_new import LoadData, DrawGraph
def PretrainedModel(mode):
if mode=="rgb" or mode=="depth":
new_input = tf.keras.Input(shape=(186, 116, 3))
elif mode=="rgbd":
new_input = tf.keras.Input(shape=(186, 232, 3))
pre_trained_model = tf.keras.applications.vgg19.VGG19(
include_top=False, input_tensor=new_input, pooling='avg')
#pre_trained_model.trainable = False
# # # custom modifications on top of pre-trained model
model = tf.keras.models.Sequential()
model.add(pre_trained_model)
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(1))
model.summary()
model.compile(
# set optimizer to Adam; for now know that optimizers help minimize loss (how to change weights)
optimizer=tf.keras.optimizers.Adam(0.001),
# sparce categorical cross entropy (measure predicted dist vs. actual)
loss=tf.keras.losses.MeanSquaredError(),
# how often do predictions match labels
metrics=[tf.keras.metrics.MeanSquaredError()]
)
return model
def PretrainedModel_new(mode):
if mode=="rgb" or mode=="depth":
new_input = tf.keras.Input(shape=(186, 116, 3))
elif mode=="rgbd":
new_input = tf.keras.Input(shape=(186, 232, 3))
pre_trained_model = tf.keras.applications.resnet50.ResNet50(
include_top=False, input_tensor=new_input)
# pre_trained_model.trainable = False
# # # custom modifications on top of pre-trained model
model = tf.keras.models.Sequential()
model.add(pre_trained_model)
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Flatten())
#model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(1))
model.summary()
model.compile(
# set optimizer to Adam; for now that optimizers help minimize loss (how to change weights)
optimizer=tf.keras.optimizers.Adam(0.0001),
# sparce categorical cross entropy (measured predicted dist vs. actual)
loss=tf.keras.losses.MeanSquaredError(),
# how often do predictions match labels
metrics=[tf.keras.metrics.MeanSquaredError()]
)
return model
def CustomModel(mode):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu', input_shape=(186, 116, 3)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(
128, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(1))
# model.add(tf.keras.layers.Conv2D(
# 32, (3, 3), activation='relu', input_shape=(186, 116, 3)))
# model.add(tf.keras.layers.MaxPooling2D((2, 2)))
# model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
# model.add(tf.keras.layers.MaxPooling2D((2, 2)))
# model.add(tf.keras.layers.Dense(1))
model.summary()
model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tf.keras.losses.MeanSquaredError(),
# how often do predictions match labels
metrics=[tf.keras.metrics.MeanSquaredError()],
)
return model
def Train(checkpoint_name, mode):
checkpoint = [tf.keras.callbacks.ModelCheckpoint(filepath="./models/"+checkpoint_name+".h5",
verbose=1,
save_best_only=True,
monitor='val_loss',
mode='min'),
tf.keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=.001, patience=10)]
if mode=="rgb":
from utils_rgb import LoadData, DrawGraph
elif mode=="depth":
from utils_depth import LoadData, DrawGraph
elif mode=="rgbd":
from utils_rgbd import LoadData, DrawGraph
trainingData, trainingLabels, validationData, validationLabels = LoadData(
"train")
print("trainingData shape", trainingData.shape)
print("validationData shape", validationData.shape)
model = CustomModel(mode)
model = PretrainedModel(mode)
model = PretrainedModel_new(mode)
print("Model created.")
history = model.fit(trainingData, trainingLabels, epochs=100, batch_size=32, validation_data=(
validationData, validationLabels), callbacks=checkpoint)
DrawGraph(history.history['loss'], history.history['val_loss'])
print("Model saved.")
if __name__ == '__main__':
mode = sys.argv[1]
print("training on {} mode".format(mode))
os.environ["CUDA_DECIVE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = 'true'
Train("checkpoint", mode)