Here (HOI-CL-OneStage) is the Code of VCL and FCL based on One-Stage method.
We notice we can also split V-COCO into 24 verbs. Therefore, we also provides the HOI-COCO with 24 verbs (i.e. both _instr and _obj are kept)
python tools/Train_ATL_HICO.py
21 verbs:
python tools/Train_ATL_HOI_COCO_21.py
24 verbs:
python tools/Train_ATL_HOI_COCO_24.py
we provide this scripts to test code and eval the ATL on HICO-DET. All models on HICO-DET share this evaluation scripts
```Shell
python scripts/eval.py --model ATL_union_batch1_semi_l2_def4_vloss2_rew2_aug5_3_x5new_coco_res101 --num_iteration 800000
```
21 verbs:
python tools/Test_ATL_ResNet_VCOCO_21.py --num_iteration 200000 --model ATL_union_multi_atl_ml5_l05_t5_def2_aug5_new_VCOCO_coco_CL_21
24 verbs:
python tools/Test_ATL_ResNet_VCOCO_24.py --num_iteration 200000 --model ATL_union_multi_atl_ml5_l05_t5_def2_aug5_new_VCOCO_coco_CL_24
- extract affordance feature
python scripts/affordance/extract_affordance_feature.py --num_iteration 160000 --model ATL_union_multi_atl_ml5_l05_t5_def2_aug5_3_new_VCOCO_test_coco_CL_21
- convert affordance feature to feature bank (select 100 instances for each verb). For V-COCO, it is not necessary since the number of verbs on V-COCO is few.
python scripts/affordance/convert_feats_to_affor_bank_hico.py --model ATL_union_batch1_atl_l2_def4_epoch2_epic2_cosine5_s0_7_vloss2_rew2_aug5_3_x5new_coco_res101 --num_iteration 259638
- extract object feature
python scripts/affordance/extract_obj_feature.py --type gthico --num_iteration 160000 --model ATL_union_multi_atl_ml5_l05_t5_def2_aug5_3_new_VCOCO_test_coco_CL_21
The type includes gthico, gtval2017, gtobj365, and gtobj365_coco.
- obtain hoi prediction
python scripts/affordance/obtain_hoi_preds.py --num_iteration 160000 --model ATL_union_multi_atl_ml5_l05_t5_def2_aug5_3_new_VCOCO_test_coco_CL_21 --dataset gthico
- statistic of affordance prediction results.
python scripts/affordance/stat_hico_affordance.py gthico ATL_union_batch1_atl_l2_def4_epoch2_epic2_cosine5_s0_7_vloss2_rew2_aug5_3_x5new_coco_res101
or
python scripts/affordance/stat_vcoco_affordance.py gthico ATL_union_multi_atl_ml5_l05_t5_def2_aug5_3_new_VCOCO_test_coco_CL_21
If you find this submission is useful for you, please consider citing:
@inproceedings{hou2021fcl,
title={Detecting Human-Object Interaction via Fabricated Compositional Learning},
author={Hou, Zhi and Yu, Baosheng and Qiao, Yu and Peng, Xiaojiang and Tao, Dacheng},
booktitle={CVPR},
year={2021}
}
@inproceedings{hou2021vcl,
title={Visual Compositional Learning for Human-Object Interaction Detection},
author={Hou, Zhi and Peng, Xiaojiang and Qiao, Yu and Tao, Dacheng},
booktitle={ECCV},
year={2020}
}
@inproceedings{hou2021atl,
title={Affordance Transfer Learning for Human-Object Interaction Detection},
author={Hou, Zhi and Yu, Baosheng and Qiao, Yu and Peng, Xiaojiang and Tao, Dacheng},
booktitle={CVPR},
year={2021}
}
Thanks for all reviewer's comments. That's very valuable for our next work. ATL gives a new insight to HOI understanding and in fact inspires a lot to our next work