-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathseurat_integration.R
293 lines (262 loc) · 14.4 KB
/
seurat_integration.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
##virus summary data
library(Seurat)
library(Matrix)
library(dplyr)
setwd('/home/data/results/workspace/nCoV_rev/balf')
samples = read.delim2("../balf_1.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
nCoV.list = list()
result.matrix = matrix(0,dim(samples)[1],4)
i = 0
for(sample_ in samples$sample){
print(sample_)
i = i + 1
print(i)
result.matrix[i,1] = sample_
samplesi = samples %>% filter(.,sample == sample_)
if(samplesi$group == 'HC'){
result.matrix[i,2] = 0
result.matrix[i,3] = 0
result.matrix[i,4] = 0
}else{
datadir = paste("/home/data/results/workspace/COVID_matrix/",sample_,"/outs/filtered_feature_bc_matrix/",sep="")
tmp = Read10X(data.dir = datadir)
tmp.gene = tmp['nCoV',]
aa <- summary(tmp.gene)
bb = sum(tmp.gene)
result.matrix[i,2] = aa[[4]]
result.matrix[i,3] = aa[[6]]
result.matrix[i,4] = bb
}
}
result.dataframe = as.data.frame(result.matrix)
colnames(result.dataframe) = c('sample','nCoV_mean','nCoV_max','nCoV_sum')
write.table(result.dataframe,file='statistics.txt',row.names = FALSE,quote = FALSE,sep='\t')
##data quality control
library(Seurat)
library(Matrix)
library(dplyr)
setwd('/home/data/results/workspace/nCoV_rev/balf')
samples = read.delim2("../balf_1.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
result.matrix = matrix(0,dim(samples)[1],3)
i = 0
for(sample_s in samples$sample){
i = i + 1
print(sample_s)
sample_i = samples %>% dplyr::filter(.,sample == sample_s)
datadir = paste("/home/data/results/workspace/COVID_matrix/",sample_s,"/outs/filtered_feature_bc_matrix/",sep="")
nCoV.data.i <- Read10X(data.dir = datadir)
nCoV.seurat <- CreateSeuratObject(counts = nCoV.data.i, min.cells = 3, min.features = 200, project = sample_s)
nCoV.seurat[['percent.mito']] <- PercentageFeatureSet(nCoV.seurat, pattern = "^MT-")
print(dim(nCoV.seurat))
dpi = 300
png(file=paste('filter/',sample_s,"_qc.png",sep=''), width = dpi*16, height = dpi*8, units = "px",res = dpi,type='cairo')
print(VlnPlot(object = nCoV.seurat, features = c("nFeature_RNA", "nCount_RNA", "percent.mito"), ncol = 3))
dev.off()
png(file=paste('filter/',sample_s,"_umi-mito.png",sep=''), width = dpi*6, height = dpi*5, units = "px",res = dpi,type='cairo')
print(FeatureScatter(object = nCoV.seurat, feature1 = "nCount_RNA", feature2 = "percent.mito"))
dev.off()
png(file=paste('filter/',sample_s,"_umi-gene.png",sep=''), width = dpi*6, height = dpi*5, units = "px",res = dpi,type='cairo')
print(FeatureScatter(object = nCoV.seurat, feature1 = "nCount_RNA", feature2 = "nFeature_RNA"))
dev.off()
result.matrix[i,1] = sample_s
result.matrix[i,2] = dim(nCoV.seurat)[2]
sample_i$nFeature_RNA_low = as.numeric(sample_i$nFeature_RNA_low)
sample_i$nFeature_RNA_high = as.numeric(sample_i$nFeature_RNA_high)
sample_i$nCount_RNA = as.numeric(sample_i$nCount_RNA)
sample_i$percent.mito = as.numeric(sample_i$percent.mito)
nCoV.seurat.filter <- subset(x = nCoV.seurat, subset = nFeature_RNA > sample_i$nFeature_RNA_low & nFeature_RNA < sample_i$nFeature_RNA_high
& nCount_RNA > sample_i$nCount_RNA & percent.mito < sample_i$percent.mito)
result.matrix[i,3] = dim(nCoV.seurat.filter)[2]
}
result.dataframe = as.data.frame(result.matrix)
colnames(result.dataframe) = c('sample','before','filter')
write.table(result.dataframe,file='filter/statistics_filter.txt',row.names = FALSE,quote = FALSE,sep='\t')
#umi statistics
library(Seurat)
library(Matrix)
library(dplyr)
setwd('/home/data/results/workspace/nCoV_rev/balf')
samples = read.delim2("../balf_1.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
result.matrix = matrix(0,dim(samples)[1],3)
i = 0
for(sample_s in samples$sample){
i = i + 1
print(sample_s)
sample_i = samples %>% dplyr::filter(.,sample == sample_s)
datadir = paste("/home/data/results/workspace/COVID_matrix/",sample_s,"/outs/filtered_feature_bc_matrix/",sep="")
nCoV.data.i <- Read10X(data.dir = datadir)
nCoV.seurat <- CreateSeuratObject(counts = nCoV.data.i, min.cells = 3, min.features = 200, project = sample_s)
nCoV.seurat[['percent.mito']] <- PercentageFeatureSet(nCoV.seurat, pattern = "^MT-")
print(dim(nCoV.seurat))
sample_i$nFeature_RNA_low = as.numeric(sample_i$nFeature_RNA_low)
sample_i$nFeature_RNA_high = as.numeric(sample_i$nFeature_RNA_high)
sample_i$nCount_RNA = as.numeric(sample_i$nCount_RNA)
sample_i$percent.mito = as.numeric(sample_i$percent.mito)
nCoV.seurat.filter <- subset(x = nCoV.seurat, subset = nFeature_RNA > sample_i$nFeature_RNA_low & nFeature_RNA < sample_i$nFeature_RNA_high
& nCount_RNA > sample_i$nCount_RNA & percent.mito < sample_i$percent.mito)
result.matrix[i,1] = sample_s
result.matrix[i,2] = median([email protected]$nFeature_RNA)
result.matrix[i,3] = median([email protected]$nCount_RNA)
}
result.matrix.dataframe = as.data.frame(result.matrix)
colnames(result.matrix.dataframe) = c('sample','median.gene','median.umi')
write.table(result.matrix.dataframe,file='statistics_tables1.txt',sep='\t',row.names = FALSE,quote = FALSE)
##integrate data with seurat v3
library(Seurat)
library(Matrix)
library(dplyr)
library(ggplot2)
setwd('/home/data/results/workspace/nCoV_rev/balf')
samples = read.delim2("../balf_1.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
nCoV.list = list()
for(sample_s in samples$sample){
print(sample_s)
sample_i = samples %>% dplyr::filter(.,sample == sample_s)
datadir = paste("/home/data/results/workspace/COVID_matrix/",sample_s,"/outs/filtered_feature_bc_matrix/",sep="")
sample.tmp = Read10X(data.dir = datadir)
sample.tmp.seurat <- CreateSeuratObject(counts = sample.tmp, min.cells = 3, min.features = 200,project = sample_s)
sample.tmp.seurat[['percent.mito']] <- PercentageFeatureSet(sample.tmp.seurat, pattern = "^MT-")
sample_i$nFeature_RNA_low = as.numeric(sample_i$nFeature_RNA_low)
sample_i$nFeature_RNA_high = as.numeric(sample_i$nFeature_RNA_high)
sample_i$nCount_RNA = as.numeric(sample_i$nCount_RNA)
sample_i$percent.mito = as.numeric(sample_i$percent.mito)
sample.tmp.seurat <- subset(x = sample.tmp.seurat, subset = nFeature_RNA > sample_i$nFeature_RNA_low & nFeature_RNA < sample_i$nFeature_RNA_high
& nCount_RNA > sample_i$nCount_RNA & percent.mito < sample_i$percent.mito)
sample.tmp.seurat <- NormalizeData(sample.tmp.seurat, verbose = FALSE)
sample.tmp.seurat <- FindVariableFeatures(sample.tmp.seurat, selection.method = "vst", nfeatures = 2000,verbose = FALSE)
nCoV.list[sample_s] = sample.tmp.seurat
}
nCoV <- FindIntegrationAnchors(object.list = nCoV.list, dims = 1:50)
nCoV.integrated <- IntegrateData(anchorset = nCoV, dims = 1:50,features.to.integrate = rownames(nCoV))
####add sample info
sample_info = as.data.frame(colnames(nCoV.integrated))
colnames(sample_info) = c('ID')
rownames(sample_info) = sample_info$ID
sample_info$sample = [email protected]$orig.ident
sample_info = dplyr::left_join(sample_info,samples)
rownames(sample_info) = sample_info$ID
nCoV.integrated = AddMetaData(object = nCoV.integrated, metadata = sample_info)
###first generate data and scale data in RNA assay
DefaultAssay(nCoV.integrated) <- "RNA"
nCoV.integrated[['percent.mito']] <- PercentageFeatureSet(nCoV.integrated, pattern = "^MT-")
nCoV.integrated <- NormalizeData(object = nCoV.integrated, normalization.method = "LogNormalize", scale.factor = 1e4)
nCoV.integrated <- FindVariableFeatures(object = nCoV.integrated, selection.method = "vst", nfeatures = 2000,verbose = FALSE)
nCoV.integrated <- ScaleData(nCoV.integrated, verbose = FALSE, vars.to.regress = c("nCount_RNA", "percent.mito"))
##change to integrated assay
DefaultAssay(nCoV.integrated) <- "integrated"
dpi = 300
png(file="qc.png", width = dpi*16, height = dpi*8, units = "px",res = dpi,type='cairo')
VlnPlot(object = nCoV.integrated, features = c("nFeature_RNA", "nCount_RNA"), ncol = 2)
dev.off()
png(file="umi-gene.png", width = dpi*6, height = dpi*5, units = "px",res = dpi,type='cairo')
FeatureScatter(object = nCoV.integrated, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
dev.off()
# Run the standard workflow for visualization and clustering
nCoV.integrated <- ScaleData(nCoV.integrated, verbose = FALSE, vars.to.regress = c("nCount_RNA", "percent.mito"))
nCoV.integrated <- RunPCA(nCoV.integrated, verbose = FALSE,npcs = 100)
nCoV.integrated <- ProjectDim(object = nCoV.integrated)
png(file="pca.png", width = dpi*10, height = dpi*6, units = "px",res = dpi,type='cairo')
ElbowPlot(object = nCoV.integrated,ndims = 100)
dev.off()
###cluster
nCoV.integrated <- FindNeighbors(object = nCoV.integrated, dims = 1:50)
nCoV.integrated <- FindClusters(object = nCoV.integrated, resolution = 1.2)
###tsne and umap
nCoV.integrated <- RunTSNE(object = nCoV.integrated, dims = 1:50)
nCoV.integrated <- RunUMAP(nCoV.integrated, reduction = "pca", dims = 1:50)
png(file="tsne.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'tsne',label = TRUE)
dev.off()
png(file="umap.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = TRUE)
dev.off()
DefaultAssay(nCoV.integrated) <- "RNA"
# find markers for every cluster compared to all remaining cells, report only the positive ones
nCoV.integrated@misc$markers <- FindAllMarkers(object = nCoV.integrated, assay = 'RNA',only.pos = TRUE, test.use = 'MAST')
write.table(nCoV.integrated@misc$markers,file='marker_MAST.txt',row.names = FALSE,quote = FALSE,sep = '\t')
dpi = 300
png(file="feature.png", width = dpi*24, height = dpi*5, units = "px",res = dpi,type='cairo')
VlnPlot(object = nCoV.integrated, features = c("nFeature_RNA", "nCount_RNA"))
dev.off()
saveRDS(nCoV.integrated, file = "nCoV.rds")
hc.markers = read.delim2("marker_MAST.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
hc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC) -> top10
tt1 = DoHeatmap(object = subset(nCoV.integrated, downsample = 500), features = top10$gene) + NoLegend()
ggplot2::ggsave(file="marker_heatmap_MAST.pdf",plot = tt1,device = 'pdf',width = 20, height = 16, units = "in",dpi = dpi,limitsize = FALSE)
#draw heatmap
library(Seurat)
library(Matrix)
library(dplyr)
library(ggplot2)
library(reshape2)
setwd('/home/data/results/workspace/nCoV_rev/balf')
markers = c('AGER','SFTPC','SCGB3A2','TPPP3','KRT5',
'CD68','FCN1','CD1C','TPSB2','CD14','MARCO','CXCR2',
'CLEC9A','IL3RA',
'CD3D','CD8A','KLRF1',
'CD79A','IGHG4','MS4A1',
'VWF','DCN',
'FCGR3A','TREM2','KRT18')
hc.markers = read.delim2("marker_MAST.txt",header = TRUE, stringsAsFactors = FALSE,check.names = FALSE, sep = "\t")
hc.markers %>% group_by(cluster) %>% top_n(n = 30, wt = avg_logFC) -> top30
var.genes = c(nCoV.integrated@[email protected],top30$gene,markers)
nCoV.integrated <- ScaleData(nCoV.integrated, verbose = FALSE, vars.to.regress = c("nCount_RNA", "percent.mito"),features = var.genes)
saveRDS(nCoV.integrated, file = "nCoV.rds")
dpi = 300
png(file="tsne.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'tsne',label = TRUE)
dev.off()
png(file="umap.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = TRUE)
dev.off()
dpi = 300
png(file="nCoV-umap-group-sample.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = FALSE, group.by = 'sample_new')
dev.off()
png(file="nCoV-umap-split-sample.png", width = dpi*16, height = dpi*16, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = TRUE, split.by = 'sample_new', ncol = 4)
dev.off()
png(file="nCoV-umap-group-group.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = FALSE, group.by = 'group')
dev.off()
png(file="nCoV-umap-split-group.png", width = dpi*12, height = dpi*4, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = TRUE, split.by = 'group', ncol = 3)
dev.off()
png(file="nCoV-umap-group-disease.png", width = dpi*8, height = dpi*6, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = FALSE, group.by = 'disease')
dev.off()
png(file="nCoV-umap-split-disease.png", width = dpi*10, height = dpi*4.5, units = "px",res = dpi,type='cairo')
DimPlot(object = nCoV.integrated, reduction = 'umap',label = TRUE, split.by = 'disease', ncol = 2)
dev.off()
####marker expression
dpi = 300
markers = c('AGER','SFTPC','SCGB3A2','TPPP3','KRT5',
'CD68','FCN1','CD1C','TPSB2','CD14','MARCO','CXCR2',
'CLEC9A','IL3RA',
'CD3D','CD8A','KLRF1',
'CD79A','IGHG4','MS4A1',
'VWF','DCN',
'FCGR3A','TREM2','KRT18','HBB')
#markers = c('HBB')
png(file="marker/violin_marker.png", width = dpi*30, height = dpi*24, units = "px",res = dpi,type='cairo')
print(VlnPlot(object = nCoV.integrated, features = markers,pt.size = 0)+ theme(axis.text.x = element_text(angle = 90,hjust = 1,vjust = 0.5)))
dev.off()
png(file="marker/umap_marker.png", width = dpi*30, height = dpi*36, units = "px",res = dpi,type='cairo')
print(FeaturePlot(object = nCoV.integrated, features = markers,cols = c("lightgrey","#ff0000")))
dev.off()
for(marker in markers){
png(file=paste("marker/violin_",marker,".png",sep=''), width = dpi*8, height = dpi*3, units = "px",res = dpi,type='cairo')
print(VlnPlot(object = nCoV.integrated, features = marker,pt.size = 0)+ theme(axis.text.x = element_text(angle = 90,hjust = 1,vjust = 0.5)))
dev.off()
png(file=paste("marker/umap_",marker,".png",sep=''), width = dpi*6, height = dpi*4, units = "px",res = dpi,type='cairo')
print(FeaturePlot(object = nCoV.integrated, features = marker,cols = c("lightgrey","#ff0000")))
dev.off()
}
library(ggplot2)
pdf(file="marker_heatmap.pdf", width = 10, height = 8)
pp = DotPlot(nCoV.integrated, features = rev(markers),cols = c('white','#F8766D'),dot.scale =5) + RotatedAxis()
pp = pp + theme(axis.text.x = element_text(size = 12),axis.text.y = element_text(size = 12)) + labs(x='',y='') +
guides(color = guide_colorbar(title = 'Scale expression'),size = guide_legend(title = 'Percent expressed')) +
theme(axis.line = element_line(size = 0.6))
print(pp)
dev.off()