-
Notifications
You must be signed in to change notification settings - Fork 476
/
Copy pathmodel_evaluator.py
53 lines (45 loc) · 1.64 KB
/
model_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import Dataset
from transformers import (
T5ForConditionalGeneration,
)
from zenml import log_metadata, step
from zenml.logger import get_logger
logger = get_logger(__name__)
@step
def evaluate_model(
model: T5ForConditionalGeneration, tokenized_dataset: Dataset
) -> None:
"""Evaluate the model on the training dataset."""
model.eval()
total_loss = 0
num_batches = 0
for i in range(0, len(tokenized_dataset), 8): # batch size of 8
batch = tokenized_dataset[i : i + 8]
inputs = {
"input_ids": torch.tensor(batch["input_ids"]),
"attention_mask": torch.tensor(batch["attention_mask"]),
"labels": torch.tensor(batch["labels"]),
}
with torch.no_grad():
outputs = model(**inputs)
total_loss += outputs.loss.item()
num_batches += 1
avg_loss = total_loss / num_batches
print(f"Average loss on the dataset: {avg_loss}")
log_metadata(metadata={"Average Loss": avg_loss}, infer_model=True)