-
Notifications
You must be signed in to change notification settings - Fork 476
/
Copy pathdata_tokenizer.py
55 lines (48 loc) · 1.6 KB
/
data_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Apache Software License 2.0
#
# Copyright (c) ZenML GmbH 2024. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Annotated, Tuple
from datasets import Dataset
from transformers import T5Tokenizer
from steps.model_trainer import T5_Model
from zenml import step
from zenml.logger import get_logger
logger = get_logger(__name__)
@step
def tokenize_data(
dataset: Dataset, model_type: T5_Model
) -> Tuple[
Annotated[Dataset, "tokenized_dataset"],
Annotated[T5Tokenizer, "tokenizer"],
]:
"""Tokenize the dataset."""
tokenizer = T5Tokenizer.from_pretrained(model_type)
def tokenize_function(examples):
model_inputs = tokenizer(
examples["input"],
max_length=128,
truncation=True,
padding="max_length",
)
labels = tokenizer(
examples["target"],
max_length=128,
truncation=True,
padding="max_length",
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
return dataset.map(tokenize_function, batched=True), tokenizer