You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: NonReflectiveQ.agda
+6
Original file line number
Diff line number
Diff line change
@@ -15,3 +15,9 @@ isZero? p with 0ℚᵘ ≃? p
15
15
16
16
open importTactic.RingSolver.Core.AlmostCommutativeRingusing (fromCommutativeRing)
17
17
open importTactic.RingSolver.NonReflective (fromCommutativeRing +-*-commutativeRing isZero?) public
18
+
19
+
importTactic.RingSolver.NonReflective
20
+
importData.Nat.Base as ℕ
21
+
_⊖_ : {A :Set} → {n : ℕ.ℕ} → Tactic.RingSolver.NonReflective.Expr A n → Tactic.RingSolver.NonReflective.Expr A n → Tactic.RingSolver.NonReflective.Expr A n
-- The nonreflective ring solver instantiated for integers.
2
+
-- (could not find on the repository)
3
+
4
+
{-# OPTIONS --without-K --safe #-}
5
+
6
+
open importAgda.Builtin.Bool
7
+
open importAgda.Builtin.Equality
8
+
open importData.Maybe.Baseusing (Maybe; just; nothing)
9
+
open importRelation.Nullary
10
+
open importData.Integer.Base as ℤ using (ℤ; +_; +0; +[1+_]; -[1+_])
11
+
open importData.Integer.Properties as ℤP
12
+
open importRelation.Binary.Definitions
13
+
14
+
isZero? :∀ (p : ℤ) -> Maybe (ℤ.0ℤ ≡ p)
15
+
isZero? p with ℤ.0ℤ ℤP.≟ p
16
+
... | .true because ofʸ p₁ = just p₁
17
+
... | .false because ofⁿ ¬p = nothing
18
+
19
+
open importTactic.RingSolver.Core.AlmostCommutativeRingusing (fromCommutativeRing)
20
+
open importTactic.RingSolver.NonReflective (fromCommutativeRing +-*-commutativeRing isZero?) public
21
+
22
+
importTactic.RingSolver.NonReflective
23
+
importData.Nat.Base as ℕ
24
+
_⊖_ : {A :Set} → {n : ℕ.ℕ} → Tactic.RingSolver.NonReflective.Expr A n → Tactic.RingSolver.NonReflective.Expr A n → Tactic.RingSolver.NonReflective.Expr A n
0 commit comments