-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathball_clean.py
138 lines (100 loc) · 3.47 KB
/
ball_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from collections import deque
import numpy as np
import argparse
import cv2
import time
import matplotlib.pyplot as plt
import serial
ser = serial.Serial('/dev/cu.usbmodem1411', 115200)
# /dev/cu.usbmodem1411
# python 35
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size")
ap.add_argument("-p", "--port", help="port for the serial connection")
args = vars(ap.parse_args())
lowerBound = (0, 182, 162)
upperBound = (255, 255, 255) ## set upper lower bound for color threshold
pts = deque(maxlen=args["buffer"])
def testFPS():
test = camera.get(cv2.CAP_PROP_FPS)
print("Frames per second should be : {0}".format(test))
# Number of frames to capture
num_frames = 120;
print("Capturing {0} frames".format(num_frames))
# Start time
start = time.time()
# Grab a few frames
for i in range(0, num_frames):
ret, frame = camera.read()
# End time
end = time.time()
# Time elapsed
seconds = end - start
print("Time taken : {0} seconds".format(seconds))
# Calculate frames per second
fps = num_frames / seconds;
print("Estimated frames per second : {0}".format(fps))
if not args.get("video", False):
camera = cv2.VideoCapture(0)
# camera.set(cv2.CAP_PROP_FPS, 15)
# if int(major_ve) < 3 :
# fps = video.get(cv2.cv.CV_CAP_PROP_FPS)
# print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps)
# else :
# testFPS()
else:
camera = cv2.VideoCapture(args["video"])
i = 0
j = 0
start = time.time()
num_frames_2 = 1200
x_arr = []
y_arr = []
# while True:
while True:
(grabbed, frame) = camera.read()
j += 1
if args.get("video") and not grabbed:
break
# frame = cv2.resize(frame, (640, 480))
# blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lowerBound, upperBound)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# only proceed if the radius meets a minimum size
if radius > 10:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
cv2.imshow("Frame", frame)
# cv2.imshow("Mask", mask)
if center is None:
str_x, str_y = "x---", "y---"
else:
str_x, str_y = "x{:03d}".format(center[0]), "y{:03d}".format(center[1])
ser.write(str_x.encode())
ser.write(str_y.encode())
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
camera.release()
cv2.destroyAllWindows()