diff --git a/tutorials/02-intermediate/deep_residual_network/main-gpu.py b/tutorials/02-intermediate/deep_residual_network/main-gpu.py index de1d4ffd..dbca05ce 100644 --- a/tutorials/02-intermediate/deep_residual_network/main-gpu.py +++ b/tutorials/02-intermediate/deep_residual_network/main-gpu.py @@ -132,6 +132,7 @@ def forward(self, x): optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) # Test +resnet.eval() correct = 0 total = 0 for images, labels in test_loader: @@ -144,4 +145,4 @@ def forward(self, x): print('Accuracy of the model on the test images: %d %%' % (100 * correct / total)) # Save the Model -torch.save(resnet.state_dict(), 'resnet.pkl') \ No newline at end of file +torch.save(resnet.state_dict(), 'resnet.pkl') diff --git a/tutorials/02-intermediate/deep_residual_network/main.py b/tutorials/02-intermediate/deep_residual_network/main.py index cbab3d4c..6bbbe4ff 100644 --- a/tutorials/02-intermediate/deep_residual_network/main.py +++ b/tutorials/02-intermediate/deep_residual_network/main.py @@ -132,6 +132,7 @@ def forward(self, x): optimizer = torch.optim.Adam(resnet.parameters(), lr=lr) # Test +resnet.eval() correct = 0 total = 0 for images, labels in test_loader: @@ -144,4 +145,4 @@ def forward(self, x): print('Accuracy of the model on the test images: %d %%' % (100 * correct / total)) # Save the Model -torch.save(resnet.state_dict(), 'resnet.pkl') \ No newline at end of file +torch.save(resnet.state_dict(), 'resnet.pkl')