-
Notifications
You must be signed in to change notification settings - Fork 3
/
bibliography.bib
1460 lines (1311 loc) · 44.2 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% Angelini-Knoll
@article{KGHReal,
title = {{Real topological Hochschild homology via the norm and Real Witt vectors}},
author = {Gabriel Angelini-Knoll and Teena Gerhardt and Michael Hill},
year = {2021},
note = {\url{https://arxiv.org/abs/2111.06970}}
}
% Angeltveit
@article{AGaxes,
author = {Vigleik Angeltveit, and Teena Gerhardt},
fjournal = {Homology, Homotopy and Applications},
journal = {Homology Homotopy Appl.},
number = {2},
pages = {103--111},
publisher = {International Press of Boston},
title = {{On the algebraic $K$-theory of the coordinate axes over the integers}},
volume = {13},
year = {2011}
}
@article{AGHtrunc,
doi = {10.1112/jtopol/jtp011},
url = {https://doi.org/10.1112/jtopol/jtp011},
year = {2009},
publisher = {Wiley},
volume = {2},
number = {2},
pages = {277--294},
author = {Vigleik Angeltveit and Teena Gerhardt and Lars Hesselholt},
title = {{On the $K$-theory of truncated polynomial algebras over the integers}},
journal = {Journal of Topology}
}
@article{ROS1TR,
title = {{$RO(S^1)$}-graded {TR}-groups of {$\mathbb F_p$}, {$\mathbb Z$} and $\ell$},
journal = {Journal of Pure and Applied Algebra},
volume = {215},
number = {6},
pages = {1405--1419},
year = {2011},
author = {Vigleik Angeltveit and Teena Gerhardt}
}
@article{AngeltveitNorm,
author = {Vigleik Angeltveit},
title = {{The norm map of Witt vectors}},
journal = {Comptes Rendus Mathematique},
volume = {353},
number = {5},
pages = {381--386},
year = {2015}
}
@article{ABGHLM,
title = {Topological cyclic homology via the norm},
volume = {23},
journal = {Documenta mathematica},
author = {Angeltveit, Vigleik and Blumberg, Andrew J. and Gerhardt, Teena and Hill, Michael A. and Lawson, Tyler and Mandell, Michael A.},
year = {2018},
month = {Oct}
}
% Anschütz
@article{AClBPrismatic,
author = {{Johannes Ansch\"utz and Artur C\'esar-Le Bras}},
title = {{Prismatic Dieudonn\'e theory}},
year = {2020},
note = {\url{https://arxiv.org/abs/1907.10525v2}}
}
@article{AClBTrace,
author = {Johannes Ansch\"utz and Artur C\'esar-Le Bras},
title = {The $p$-completed cyclotomic trace in degree 2},
year = {2019},
note = {\url{https://arxiv.org/abs/1907.10530v1}}
}
% Antieau
@article{AntieauSWitt,
author = {Antieau, Benjamin},
title = {{Spherical Witt vectors and integral models for spaces}},
year = {2023},
note = {\url{https://arxiv.org/abs/2308.07288v1}}
}
@article{AMMN,
author = {Benjamin Antieau and Akhil Mathew and Matthew Morrow and Thomas Nikolaus},
title = {{On the Beilinson fiber square}},
volume = {171},
journal = {Duke Mathematical Journal},
number = {18},
publisher = {Duke University Press},
pages = {3707 -- 3806},
keywords = {Cyclic homology, deformation of algebraic cycles, motivic cohomology, p-adic K-theory},
year = {2022},
doi = {10.1215/00127094-2022-0037},
url = {https://doi.org/10.1215/00127094-2022-0037}
}
@article{ANcris,
title = {{The cyclotomic $t$-structure and crystalline cohomology in characteristic $p$}},
author = {Benjamin Antieau and Thomas Nikolaus},
note = {In preparation.}
}
@article{TCart,
title = {Cartier modules and cyclotomic spectra},
author = {Benjamin Antieau and Thomas Nikolaus},
year = {2021},
month = jan,
volume = {34},
pages = {1--78},
journal = {Journal of the American Mathematical Society},
issn = {0894-0347},
publisher = {American Mathematical Society},
number = {1}
}
@article{Antieau,
author = {Benjamin Antieau},
title = {{Periodic cyclic homology and derived de Rham cohomology}},
year = {2018},
note = {\url{https://arxiv.org/abs/1808.05246}}
}
% Ayala
@article{AMGRMackey,
title = {{Derived Mackey functors and $C_{p^n}$-equivariant cohomology}},
author = {David Ayala and Aaron Mazel-Gee and Nick Rozenblyum},
year = {2021},
note = {\url{https://arxiv.org/abs/2105.02456}}
}
@article{AMGRgenuine,
title = {{A naive approach to genuine $G$-spectra and cyclotomic spectra}},
author = {David Ayala and Aaron Mazel-Gee and Nick Rozenblyum},
year = {2017},
note = {\url{https://arxiv.org/abs/1710.06416}}
}
@article{AMGRtrace,
title = {{The geometry of the cyclotomic trace}},
author = {David Ayala and Aaron Mazel-Gee and Nick Rozenblyum},
year = {2017},
note = {\url{https://arxiv.org/abs/1710.06409}}
}
@article{AMGRStratified,
title = {Stratified noncommutative geometry},
author = {David Ayala and Aaron Mazel-Gee and Nick Rozenblyum},
year = {2022},
note = {\url{https://arxiv.org/abs/1910.14602}}
}
% Barwick
@article{BGcyclonic,
title = {{Cyclonic spectra, cyclotomic spectra, and a conjecture of Kaledin}},
author = {Clark Barwick and Saul Glasman},
year = {2016},
note = {\url{https://arxiv.org/abs/1602.02163}}
}
@article{BarwickMackeyI,
title = {{Spectral Mackey functors and equivariant algebraic K-theory (I)}},
journal = {Advances in Mathematics},
volume = {304},
pages = {646 - 727},
year = {2017},
issn = {0001-8708},
doi = {https://doi.org/10.1016/j.aim.2016.08.043},
url = {http://www.sciencedirect.com/science/article/pii/S0001870816311434},
author = {Clark Barwick}
}
% Bhargava
@article{Bhargava!,
author = {Manjul Bhargava},
journal = {The American Mathematical Monthly},
number = {9},
pages = {783--799},
publisher = {Mathematical Association of America},
title = {{The Factorial Function and Generalizations}},
volume = {107},
year = {2000}
}
% Bhatt
@article{APC,
author = {Bhargav Bhatt and Jacob Lurie},
title = {Absolute prismatic cohomology},
year = {2022},
note = {\url{https://arxiv.org/abs/2201.06120}}
}
@article{BLPrismatization,
author = {Bhargav Bhatt and Jacob Lurie},
title = {{Prismatization of $p$-adic formal schemes}},
year = {2022},
note = {\url{https://arxiv.org/abs/2201.06124}}
}
@article{BMS1,
author = {Bhargav Bhatt and Matthew Morrow and Peter Scholze},
title = {{Integral $p$-adic Hodge theory}},
journal = {Publications math{\'e}matiques de l'IH{\'E}S},
year = {2018},
month = {Nov},
day = {01},
volume = {128},
number = {1},
pages = {219--397}
}
@article{BMS2,
author = {Bhargav Bhatt and Matthew Morrow and Peter Scholze},
title = {Topological {H}ochschild homology and integral $p$-adic {H}odge theory},
journal = {Publications math{\'e}matiques de l'IH{\'E}S},
year = {2019},
month = {Jun},
day = {01},
volume = {129},
number = {1},
pages = {199--310}
}
@article{WittAffGr,
year = {2016},
month = Dec,
publisher = {Springer Science and Business Media {LLC}},
volume = {209},
number = {2},
pages = {329--423},
author = {Bhargav Bhatt and Peter Scholze},
title = {{Projectivity of the Witt vector affine Grassmannian}},
journal = {Inventiones mathematicae}
}
@article{PrismNotes,
author = {Bhargav Bhatt},
title = {Prismatic cohomology},
year = {2018},
note = {\url{http://www-personal.umich.edu/~bhattb/teaching/prismatic-columbia/}}
}
@article{Prismatic,
author = {Bhargav Bhatt and Peter Scholze},
title = {{Prisms and prismatic cohomology}},
volume = {196},
journal = {Annals of Mathematics},
number = {3},
publisher = {Department of Mathematics of Princeton University},
pages = {1135 -- 1275},
keywords = {$p$-adic cohomology, $p$-adic Hodge theory, Crystalline cohomology, de Rham cohomology, étale cohomology},
year = {2022},
doi = {10.4007/annals.2022.196.3.5},
url = {https://doi.org/10.4007/annals.2022.196.3.5}
}
% Blumberg
@article{BGT,
year = {2013},
month = {Apr},
publisher = {Mathematical Sciences Publishers},
volume = {17},
number = {2},
pages = {733--838},
author = {Andrew J.~Blumberg and David Gepner and Gonçalo Tabuada},
title = {{A universal characterization of higher algebraic $K$-theory}},
journal = {Geometry {\&} Topology}
}
@article{BMCyclotomic,
author = {Andrew J.~Blumberg and Michael A.~Mandell},
fjournal = {Geometry & Topology},
journal = {Geom. Topol.},
number = {6},
pages = {3105--3147},
publisher = {MSP},
title = {The homotopy theory of cyclotomic spectra},
volume = {19},
year = {2015}
}
@article{BlumbergNotes,
author = {Andrew Blumberg and Arun Debray},
title = {{The Burnside category: Notes for a class on equivariant stable homotopy theory}},
year = {2017},
note = {\url{https://web.ma.utexas.edu/users/a.debray/lecture_notes/m392c_EHT_notes.pdf}}
}
@article{BGTMult,
title = {Uniqueness of the multiplicative cyclotomic trace},
journal = {Advances in Mathematics},
volume = {260},
pages = {191--232},
year = {2014},
issn = {0001-8708},
author = {Andrew J.~Blumberg and David Gepner and Gonçalo Tabuada}
}
% Bokstedt
@article{Bokstedt,
title = {{Topological Hochschild homology of $\mathbb Z$ and $\mathbb Z/p$}},
author = {M.\ B{\"o}kstedt},
year = {1985}
}
@article{BHM,
author = {B{\"o}kstedt, M. and Hsiang, W. C. and Madsen, I.},
title = {{The cyclotomic trace and algebraic $K$-theory of spaces}},
journal = {Inventiones mathematicae},
year = {1993},
month = {Dec},
day = {01},
volume = {111},
number = {1},
pages = {465--539},
issn = {1432-1297}
}
% Borger
@article{BorgerF1,
title = {{$\Lambda$-rings and the field with one element}},
author = {James Borger},
year = {2009},
note = {\url{https://arxiv.org/abs/0906.3146}}
}
@article{Borger,
author = {Borger, James},
fjournal = {Algebra & Number Theory},
journal = {Algebra Number Theory},
number = {2},
pages = {231--285},
publisher = {MSP},
title = {{The basic geometry of Witt vectors, I The affine case}},
volume = {5},
year = {2011}
}
% Brun
@article{BrunWitt,
title = {{Witt vectors and Tambara functors}},
journal = {Advances in Mathematics},
volume = {193},
number = {2},
pages = {233-256},
year = {2005},
issn = {0001-8708},
author = {Morten Brun}
}
% Burklund
@article{ChromaticNullstellensatz,
title = {{The Chromatic Nullstellensatz}},
author = {Robert Burklund and Tomer M. Schlank and Allen Yuan},
year = {2022},
note = {\url{https://arxiv.org/abs/2207.09929}}
}
% Cesnavicius
@article{CSPurity,
title = {Purity for flat cohomology},
author = {K{\c e}stutis {\v C}esnavi{\v c}ius and Peter Scholze},
journal = {Annals of Mathematics},
note = {To appear.}
}
% Chatzistamatiou
@article{ChatzqCrys,
title = {{$q$-crystals and $q$-connections}},
author = {Andre Chatzistamatiou},
year = {2020},
note = {\url{https://arxiv.org/abs/2010.02504}}
}
% Clauwens
@article{KGroupsLambdaRings1,
author = {Clauwens, F. J.-B. J.},
title = {{The $K$-groups of $\lambda $-rings. {Part} {I.} {Construction} of the logarithmic invariant}},
journal = {Compositio Mathematica},
pages = {295--328},
publisher = {Martinus Nijhoff Publishers},
volume = {61},
number = {3},
year = {1987},
zbl = {0626.18008},
language = {en},
url = {http://www.numdam.org/item/CM_1987__61_3_295_0/}
}
% Cortinas
@article{CHWWpos,
title = {{The $K$-theory of toric varieties in positive characteristic}},
author = {Guillermo Cortinas and Christian Haesemeyer and Mark E. Walker and Charles A. Weibel},
year = {2012},
note = {\url{https://arxiv.org/abs/1207.2891}}
}
% Cranch
@article{Cranch,
title = {Algebraic theories and $(\infty,1)$-categories},
author = {James Cranch},
year = {2010},
note = {\url{https://arxiv.org/abs/1011.3243}}
}
% Devalapurkar
@article{DevalapurkarRoots,
year = {2020},
month = {Feb},
publisher = {American Mathematical Society ({AMS})},
volume = {148},
number = {7},
pages = {3187--3194},
author = {Sanath Devalapurkar},
title = {{Roots of unity in $K(n)$-local rings}},
journal = {Proceedings of the American Mathematical Society}
}
@article{TopologicalSen,
title = {{Topological Hochschild homology, truncated Brown-Peterson spectra, and a topological Sen operator}},
author = {S. K. Devalapurkar},
year = {2023},
note = {\url{https://sanathdevalapurkar.github.io/files/thh-Xn.pdf}}
}
@article{GNS,
title = {{Generalized $n$-series and de Rham complexes}},
author = {S. K. Devalapurkar and M. L. Misterka},
year = {2023},
note = {\url{https://sanathdevalapurkar.github.io/files/fgls-and-dR-complexes.pdf}}
}
% Dotto
@article{TRCoeff,
title = {{Witt vectors with coefficients, TR and the HHR-norm}},
author = {E. Dotto and A. Krause and T. Nikolaus and I. Patchkoria},
note = {Forthcoming.}
}
@article{DMPPolynomial,
year = {2022},
publisher = {Societ\'e Math\'ematique de France},
volume = {55},
number = {2},
pages = {473--535},
author = {Emanuele Dotto and Irakli Patchkoria and Kristian Jonsson Moi},
title = {{Witt Vectors, Polynomial Maps, and Real Topological Hochschild Homology}},
journal = {Annales scientifiques de l{\textquotesingle}{\'{E}}cole Normale Sup{\'{e}}rieure}
}
% Dress
@article{DSBurnside,
title = {{The Burnside ring of profinite groups and the Witt vector construction}},
journal = {Advances in Mathematics},
volume = {70},
number = {1},
pages = {87-132},
year = {1988},
issn = {0001-8708},
doi = {https://doi.org/10.1016/0001-8708(88)90052-7},
url = {https://www.sciencedirect.com/science/article/pii/0001870888900527},
author = {Andreas W.M. Dress and Christian Siebeneicher}
}
% Drinfeld
@article{DrinfeldCrystallizationA1,
title = {Crystallization of the affine line},
note = {\url{https://math.uchicago.edu/\~drinfeld/Seminar-2019/Winter/Crystallization\%20of\%20affine\%20line.pdf}}
}
% Fontaine
@book{Fpdiv,
author = {Fontaine, Jean-Marc},
title = {Groupes $p$-divisibles sur les corps locaux},
series = {Ast\'erisque},
publisher = {Soci\'et\'e math\'ematique de France},
number = {47-48},
year = {1977},
zbl = {0377.14009},
mrnumber = {498610},
language = {fr},
url = {http://www.numdam.org/item/AST_1977__47-48__1_0}
}
@incollection{FontaineCorps,
author = {Fontaine, Jean-Marc},
title = {{Expos\'e II~: Le corps des p\'eriodes $p$-adiques}},
booktitle = {{P\'eriodes $p$-adiques - S\'eminaire de Bures, 1988}},
editor = {Fontaine, Jean-Marc},
series = {Ast\'erisque},
publisher = {Soci\'et\'e math\'ematique de France},
number = {223},
year = {1994},
note = {talk:2},
pages = {59-101},
zbl = {0940.14012},
mrnumber = {1293971},
language = {fr}
}
% Gerhardt
@article{TeenaTR,
year = {2008},
month = {Oct},
publisher = {Mathematical Sciences Publishers},
volume = {8},
number = {4},
pages = {1961--1987},
author = {Teena Gerhardt},
title = {The {$R(S^1)$}-graded equivariant homotopy of {$\operatorname{THH}(\mathbb F_p)$}},
journal = {Algebraic {\&} Geometric Topology}
}
% Greenlees
@inbook{Greenlees4Real,
author = {Greenlees, John},
year = {2018},
month = {01},
pages = {139-156},
title = {Four approaches to cohomology theories with reality},
journal = {Contemporary Mathematics},
booktitle = {An Alpine Bouquet of Algebraic Topology}
}
% Greenlees-May
@article{GMTate,
year = {1995},
publisher = {American Mathematical Society ({AMS})},
volume = {113},
number = {543},
pages = {0--0},
author = {J. P. C. Greenlees and J. P. May},
title = {{Generalized Tate cohomology}},
journal = {Memoirs of the American Mathematical Society}
}
% Gros
@inproceedings{GLQqCrys,
author = {Gros, Michel and Stum, Bernard Le and Quir{\'o}s, Adolfo},
editor = {Bhatt, Bhargav and Olsson, Martin},
title = {Twisted Differential Operators and q-Crystals},
booktitle = {p-adic Hodge Theory, Singular Varieties, and Non-Abelian Aspects},
year = {2023},
publisher = {Springer International Publishing},
address = {Cham},
pages = {183--238},
abstract = {We discuss the notion of a q-PD-envelope considered by Bhatt and Scholze in their recent theory of q-crystalline cohomology and explain the relation with our notion of a divided polynomial twisted algebra. Together with an interpretation of crystals on the q-crystalline site, that we call q-crystals, as modules endowed with some kind of stratification, it allows us to associate a module on the ring of twisted differential operators to any q-crystal. For simplicity, we explain here only the one dimensional case.},
isbn = {978-3-031-21550-6}
}
% Guillou
@article{GuillouMay,
title = {{Models of $G$-spectra as presheaves of spectra}},
author = {Bert Guillou and Peter May},
year = {2017},
note = {\url{https://arxiv.org/abs/1110.3571}}
}
% Hahn
@article{Spoke,
title = {{Odd primary analogs of Real orientations}},
author = {Jeremy Hahn and Andrew Senger and Dylan Wilson},
year = {2022},
note = {\url{https://arxiv.org/abs/2009.12716}}
}
% Hesselholt
@inbook{HesselholtHandbook,
author = {Hesselholt, Lars},
editor = {Friedlander, Eric M. and Grayson, Daniel R.},
title = {{$K$-theory of truncated polynomial algebras}},
booktitle = {Handbook of K-Theory},
year = {2005},
publisher = {Springer Berlin Heidelberg},
address = {Berlin, Heidelberg},
pages = {71--110},
isbn = {978-3-540-27855-9}
}
@article{LarsTower,
author = {Hesselholt, Lars},
title = {{The tower of $K$-theory of truncated polynomial algebras}},
journal = {Journal of Topology},
volume = {1},
number = {1},
pages = {87-114},
year = {2007},
month = {10}
}
@article{LarsTowerGraphics,
author = {Hesselholt, Lars},
title = {{The tower of $K$-theory of truncated polynomial algebras. A graphics illustration}},
year = {2007},
note = {\url{https://math.mit.edu/~larsh/papers/022/towergraphics.pdf}}
}
@article{HesselholtBigW,
doi = {10.1007/s11511-015-0124-y},
url = {https://doi.org/10.1007/s11511-015-0124-y},
year = {2015},
publisher = {International Press of Boston},
volume = {214},
number = {1},
pages = {135--207},
author = {Lars Hesselholt},
title = {{The big de Rham{\textendash}Witt complex}},
journal = {Acta Mathematica}
}
@article{HMCyclicPolytopes,
author = {Lars Hesselholt and Ib Madsen},
title = {{Cyclic polytopes and the $K$-theory of truncated polynomial algebras}},
journal = {Inventiones mathematicae},
year = {1997},
month = {Sep},
day = {1},
volume = {130},
number = {1},
pages = {73--97},
issn = {1432-1297}
}
@book{HMcyclotomic,
address = {Djursholm},
author = {Lars Hesselholt and Ib Madsen},
publisher = {Institut Mittag-Leffler},
title = {Topological cyclic homology of perfect fields and their dual numbers},
year = {1994}
}
@article{HesselholtAxes,
author = {Hesselholt, Lars},
fjournal = {Nagoya Mathematical Journal},
journal = {Nagoya Math. J.},
pages = {93--109},
publisher = {Nagoya Mathematical Journal},
title = {{On the $K$-theory of the coordinate axes in the plane}},
volume = {185},
year = {2007}
}
@article{HMNil,
author = {Hesselholt, Lars and Madsen, Ib},
year = {2001},
month = {01},
pages = {},
title = {On the K-theory of nilpotent endomorphisms},
isbn = {9780821826218},
doi = {10.1090/conm/271/04353}
}
@article{LarsPTyp,
author = {Hesselholt, Lars},
fjournal = {Acta Mathematica},
journal = {Acta Math.},
number = {1},
pages = {1--53},
publisher = {Institut Mittag-Leffler},
title = {{On the $p$-typical curves in Quillen's $K$-theory}},
volume = {177},
year = {1996}
}
@inproceedings{LarsOCp,
year = {2006},
publisher = {American Mathematical Society},
pages = {133--162},
author = {Lars Hesselholt},
title = {On the topological cyclic homology of the algebraic closure of a local field},
editor = {Arlettaz, {Dominique } and Hess, {Kathryn }},
booktitle = {An Alpine Anthology of Homotopy Theory}
}
@article{HMFinite,
title = {{On the $K$-theory of finite algebras over Witt vectors of perfect fields}},
journal = {Topology},
volume = {36},
number = {1},
pages = {29 - 101},
year = {1997},
author = {Lars Hesselholt and Ib Madsen}
}
@inproceedings{HNHandbook,
author = {Lars Hesselholt and Thomas Nikolaus},
title = {Topological cyclic homology},
year = {2020},
month = {Jan},
publisher = {Chapman and Hall/{CRC}},
editor = {Haynes Miller},
booktitle = {Handbook of Homotopy Theory},
pages = {619--656}
}
% Hill
@inproceedings{HillHandbook,
author = {Michael A.\ Hill},
title = {Equivariant stable homotopy theory},
year = {2020},
month = Jan,
publisher = {Chapman and Hall/{CRC}},
editor = {Haynes Miller},
booktitle = {Handbook of Homotopy Theory},
pages = {699--756}
}
@article{HillTambaraAQ,
title = {{On the Andr\'e-Quillen homology of Tambara functors}},
journal = {Journal of Algebra},
volume = {489},
pages = {115-137},
year = {2017},
issn = {0021-8693},
author = {Michael A. Hill},
keywords = {Mackey functors, Finite groups, Tambara functors, Derivations, Quillen homology},
abstract = {We lift to equivariant algebra three closely related classical algebraic concepts: abelian group objects in augmented commutative algebras, derivations, and Kähler differentials. We define Mackey functor objects in the category of Tambara functors augmented to a fixed Tambara functor R_, and we show that the usual square-zero extension gives an equivalence of categories between these Mackey functor objects and ordinary modules over R_. We then describe the natural generalization to Tambara functors of a derivation, building on the intuition that a Tambara functor has products twisted by arbitrary finite G-sets, and we connect this to square-zero extensions in the expected way. Finally, we show that there is an appropriate form of Kähler differentials which satisfy the classical relation that derivations out of R_ are the same as maps out of the Kähler differentials.}
}
@article{HHR_KR,
title = {{The slice spectral sequence for the $C_4$ analog of real $K$-theory}},
author = {M.A. Hill and M.J. Hopkins and D.C. Ravenel},
year = {2016},
note = {\url{https://arxiv.org/abs/1502.07611}}
}
@article{HHR,
author = {M.A. Hill and M.J. Hopkins and D.C. Ravenel},
title = {On the nonexistence of elements of {K}ervaire invariant one},
journal = {Annals of Mathematics},
year = {2016},
volume = {184},
number = {1},
pages = {1--262}
}
@article{HHR_HZ,
title = {The Slice Spectral Sequence for certain {$\RO(C_{p^n})$}-graded Suspensions of {$H\underline\Z$}},
author = {Michael A. Hill and Michael J. Hopkins and Douglas C. Ravenel},
journal = {Boletín de la Sociedad Matemática Mexicana},
year = {2017},
month = {Apr},
volume = {23},
number = {1},
pages = {289--317}
}
@article{Primer,
year = {2012},
publisher = {International Press of Boston},
volume = {14},
number = {2},
pages = {143--166},
author = {Michael A. Hill},
title = {The equivariant slice filtration: a primer},
journal = {Homology, Homotopy and Applications}
}
% Hill-Yarnall
@article{NewSlices,
year = {2018},
month = {May},
publisher = {American Mathematical Society ({AMS})},
volume = {146},
number = {8},
pages = {3605--3614},
author = {Michael A. Hill and Carolyn Yarnall},
title = {{A new formulation of the equivariant slice filtration with applications to $C_p$-slices}},
journal = {Proceedings of the American Mathematical Society}
}
% Hill-Zeng
@article{HZhZ,
title = {{The $\mathbb Z$-homotopy fixed points of $C_n$ spectra with applications to norms of $MU_{\mathbb R}$}},
author = {Michael A. Hill and Mingcong Zeng},
year = {2018},
note = {\url{https://arxiv.org/abs/1808.10412}}
}
% Horiuchi
@article{HoriuchiV,
title = {{Verschiebung maps among $K$-groups of truncated polynomial algebras}},
journal = {Journal of Pure and Applied Algebra},
volume = {225},
number = {8},
pages = {106641},
year = {2021},
issn = {0022-4049},
doi = {https://doi.org/10.1016/j.jpaa.2020.106641},
url = {https://www.sciencedirect.com/science/article/pii/S002240492030342X},
author = {Ryo Horiuchi}
}
% Hornbostel
@article{THRSchemes,
title = {{Real topological Hochschild homology of schemes}},
author = {Jens Hornbostel and Doosung Park},
year = {2023},
note = {\url{https://arxiv.org/abs/2209.12796s}}
}
% Illusie
@book{IllusieL2,
year = {1972},
publisher = {Springer Berlin Heidelberg},
author = {Luc Illusie},
title = {Complexe Cotangent et D\'eformations {II}}
}
% Kaledin
@inproceedings{KaledinICM,
doi = {10.1142/9789814324359_0060},
url = {https://doi.org/10.1142/9789814324359_0060},
year = {2011},
month = {Jun},
publisher = {Published by Hindustan Book Agency ({HBA}), India. {WSPC} Distribute for All Markets Except in India},
author = {D. Kaledin},
title = {Motivic Structures in Non-commutative Geometry},
booktitle = {Proceedings of the International Congress of Mathematicians 2010 ({ICM} 2010)}
}
@article{KaledinMackey,
title = {{Derived Mackey functors}},
author = {Kaledin, Dmitry Borisovich},
journal = {{Moscow Mathematical Journal}},
volume = {11},
number = {4},
pages = {723--803},
year = {2011},
publisher = {Независимый Московский университет--МЦНМО}
}
% Krause
@article{KMNPolygonic,
author = {Achim Krause and Jonas McCandless and Thomas Nikolaus},
title = {{Polygonic spectra and $\mathrm{TR}$ with coefficients}},
note = {In preparation.}
}
@article{KrauseNikolaus,
author = {Achim Krause and Thomas Nikolaus},
title = {Lectures on topological {Hochschild} homology and cyclotomic spectra},
note = {\url{https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/Lectures.pdf}}
}
@article{KrauseNikolausBP,
author = {Achim Krause and Thomas Nikolaus},
title = {{B\"okstedt periodicity and quotients of DVRs}},
note = {\url{https://arxiv.org/abs/1907.03477}},
year = {2019}
}
% Li
@article{HigherPrismaticSite,
title = {Prismatic and $q$-crystalline sites of higher level},
ISSN = {0041-8994},
url = {http://dx.doi.org/10.4171/RSMUP/136},
DOI = {10.4171/rsmup/136},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
publisher = {European Mathematical Society - EMS - Publishing House GmbH},
author = {Li, Kimihiko},
year = {2023},
month = oct
}
% Lindenstrauss
@article{EtaleTambara,
title = {{Examples of \'etale extensions of Tambara functors}},
author = {Ayelet Lindenstrauss and Birgit Richter and Foling Zou},
year = {2023},
note = {\url{https://arxiv.org/abs/2304.01656}}
}
% Lurie
@misc{LurieMOPrisms,
title = {What are the potential applications of perfectoid spaces to homotopy theory?},
author = {Jacob Lurie},
year = {2021},
howpublished = {MathOverflow},
note = {\url{https://mathoverflow.net/questions/273352/what-are-the-potential-applications-of-perfectoid-spaces-to-homotopy-theory\#comment985403_386521}},
url = {\url{https://mathoverflow.net/questions/273352/what-are-the-potential-applications-of-perfectoid-spaces-to-homotopy-theory\#comment985403_386521}}
}
@unpublished{HA,
adsurl = {http://www.math.harvard.edu/~lurie/},
author = {Lurie, Jacob},
month = Aug,
note = {available on author's website},
title = {Higher Algebra},
year = 2017
}
@unpublished{SAG,
title = {{Spectral Algebraic Geometry}},
author = {Jacob Lurie}
}
@article{Ell2,
title = {{Elliptic cohomology II: Orientations}},
author = {Jacob Lurie},
year = {2018},
note = {\url{https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf}}
}
% Manam
@article{DrinfeldFormalGroup,
title = {{On the Drinfeld formal group}},
author = {Deven Manam},
year = {2024},
note = {\url{https://arxiv.org/abs/2403.02555}}
}
% Mathew
@article{MathewK1,
title = {{On $K(1)$-local $\mathrm {TR}$}},
volume = {157},
doi = {10.1112/S0010437X21007144},
number = {5},
journal = {Compositio Mathematica},
publisher = {London Mathematical Society},
author = {Mathew,
Akhil},
year = {2021},
pages = {1079–1119}
}
@article{MathewBMS,
author = {Mathew, Akhil},
title = {{Some recent advances in topological Hochschild homology}},
journal = {Bulletin of the London Mathematical Society},
volume = {54},
number = {1},
pages = {1-44},
doi = {https://doi.org/10.1112/blms.12558},
url = {https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms.12558},
eprint = {https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms.12558},
year = {2022}
}
% May
@article{MayTHH,
title = {{Topological Hochschild and cyclic homology and algebraic $K$-theory}},
author = {Peter May},
note = {\url{https://pdfs.semanticscholar.org/1b7d/a48f625142b3b472ce7856d2a4bdbe1e9933.pdf}}
}
% McCandless
@article{McCandlessTR,
title = {{On curves in $K$-theory and $\mathrm{TR}$}},
author = {Jonas McCandless},
year = {2022},
note = {\url{https://arxiv.org/abs/2102.08281}}
}
% Molokov
@article{Molokov,
title = {{Prismatic cohomology and de Rham-Witt forms}},
author = {Semen Molokov},
year = {2020},
note = {\url{https://arxiv.org/abs/2008.04956}}
}
% Nygaard
@article{Nygaard,
author = {Nygaard, Niels O.},
title = {{Slopes of powers of Frobenius on crystalline cohomology}},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
publisher = {Elsevier},
volume = {Ser. 4, 14},
number = {4},
year = {1981},
pages = {369-401},
doi = {10.24033/asens.1411},
zbl = {0519.14012},
mrnumber = {84d:14011},
language = {en},
url = {http://www.numdam.org/item/ASENS_1981_4_14_4_369_0}
}
% Patchkoria
@article{SpecDerivedMackey,
year = {2022},
month = Mar,
publisher = {American Mathematical Society ({AMS})},
volume = {375},
number = {06},
pages = {4057--4105},
author = {Irakli Patchkoria and Beren Sanders and Christian Wimmer},
title = {{The spectrum of derived Mackey functors}},
journal = {Transactions of the American Mathematical Society}
}
% Pridham
@article{Pridham-qdR,
year = {2019},