forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_lit_checkpoint.py
400 lines (365 loc) · 18.4 KB
/
convert_lit_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
import gc
from collections import defaultdict
from functools import partial
from pathlib import Path
from pprint import pprint
from typing import Dict, Optional, Union
import torch
from lightning.fabric.utilities.load import _NotYetLoadedTensor as NotYetLoadedTensor
from litgpt import Config
from litgpt.scripts.convert_hf_checkpoint import layer_template, load_param
from litgpt.utils import extend_checkpoint_dir, incremental_save, lazy_load
def copy_weights_falcon(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "transformer.word_embeddings.weight",
"transformer.h.{}.attn.qkv.weight": "transformer.h.{}.self_attention.query_key_value.weight",
"transformer.h.{}.attn.proj.weight": "transformer.h.{}.self_attention.dense.weight",
"transformer.h.{}.mlp.fc.weight": "transformer.h.{}.mlp.dense_h_to_4h.weight",
"transformer.h.{}.mlp.proj.weight": "transformer.h.{}.mlp.dense_4h_to_h.weight",
"transformer.ln_f.bias": "transformer.ln_f.bias",
"transformer.ln_f.weight": "transformer.ln_f.weight",
"lm_head.weight": "lm_head.weight",
}
# the original model definition is different for each size
if "7b" in config.name:
weight_map.update(
{
"transformer.h.{}.norm_1.bias": "transformer.h.{}.input_layernorm.bias",
"transformer.h.{}.norm_1.weight": "transformer.h.{}.input_layernorm.weight",
}
)
elif "40b" in config.name or "180B" in config.name:
weight_map.update(
{
"transformer.h.{}.norm_1.bias": "transformer.h.{}.ln_attn.bias",
"transformer.h.{}.norm_1.weight": "transformer.h.{}.ln_attn.weight",
"transformer.h.{}.norm_2.bias": "transformer.h.{}.ln_mlp.bias",
"transformer.h.{}.norm_2.weight": "transformer.h.{}.ln_mlp.weight",
}
)
else:
raise NotImplementedError
for from_name, param in lit_weights.items():
name_template, layer_idx = layer_template(from_name)
to_name = weight_map[name_template].format(layer_idx)
param = load_param(param, from_name, None)
if from_name.endswith((".attn.qkv.weight", ".attn.qkv.bias")):
# Reassemble [q, q, ..., k, k, ..., v, v, ...] --> [q, k, v, q, k, v, ...]
param = qkv_reassemble(param, config)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_gpt_neox(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "gpt_neox.embed_in.weight",
"transformer.h.{}.norm_1.bias": "gpt_neox.layers.{}.input_layernorm.bias",
"transformer.h.{}.norm_1.weight": "gpt_neox.layers.{}.input_layernorm.weight",
"transformer.h.{}.attn.qkv.bias": "gpt_neox.layers.{}.attention.query_key_value.bias",
"transformer.h.{}.attn.qkv.weight": "gpt_neox.layers.{}.attention.query_key_value.weight",
"transformer.h.{}.attn.proj.bias": "gpt_neox.layers.{}.attention.dense.bias",
"transformer.h.{}.attn.proj.weight": "gpt_neox.layers.{}.attention.dense.weight",
"transformer.h.{}.norm_2.bias": "gpt_neox.layers.{}.post_attention_layernorm.bias",
"transformer.h.{}.norm_2.weight": "gpt_neox.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.mlp.fc.bias": "gpt_neox.layers.{}.mlp.dense_h_to_4h.bias",
"transformer.h.{}.mlp.fc.weight": "gpt_neox.layers.{}.mlp.dense_h_to_4h.weight",
"transformer.h.{}.mlp.proj.bias": "gpt_neox.layers.{}.mlp.dense_4h_to_h.bias",
"transformer.h.{}.mlp.proj.weight": "gpt_neox.layers.{}.mlp.dense_4h_to_h.weight",
"transformer.ln_f.bias": "gpt_neox.final_layer_norm.bias",
"transformer.ln_f.weight": "gpt_neox.final_layer_norm.weight",
"lm_head.weight": "embed_out.weight",
}
for from_name, param in lit_weights.items():
name_template, layer_idx = layer_template(from_name)
to_name = weight_map[name_template].format(layer_idx)
param = load_param(param, from_name, None)
if from_name.endswith((".attn.qkv.weight", ".attn.qkv.bias")):
# Reassemble [q, q, ..., k, k, ..., v, v, ...] --> [q, k, v, q, k, v, ...]
param = qkv_reassemble(param, config)
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_llama(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
untie_weights: bool = False,
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{}.input_layernorm.weight",
"transformer.h.{}.norm_1.bias": "model.layers.{}.input_layernorm.bias",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.o_proj.weight",
"transformer.h.{}.norm_2.weight": "model.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.norm_2.bias": "model.layers.{}.post_attention_layernorm.bias",
"transformer.ln_f.weight": "model.norm.weight",
"transformer.ln_f.bias": "model.norm.bias",
"lm_head.weight": "lm_head.weight",
}
if config.mlp_class_name == "LLaMAMoE":
weight_map.update(
{
"transformer.h.{}.mlp.gate.weight": "model.layers.{}.block_sparse_moe.gate.weight",
"transformer.h.{}.mlp.experts.{}.fc_1.weight": "model.layers.{}.block_sparse_moe.experts.{}.w1.weight",
"transformer.h.{}.mlp.experts.{}.fc_2.weight": "model.layers.{}.block_sparse_moe.experts.{}.w3.weight",
"transformer.h.{}.mlp.experts.{}.proj.weight": "model.layers.{}.block_sparse_moe.experts.{}.w2.weight",
}
)
elif config.mlp_class_name in ("LLaMAMLP", "GemmaMLP"):
weight_map.update(
{
"transformer.h.{}.mlp.fc_1.weight": "model.layers.{}.mlp.gate_proj.weight",
"transformer.h.{}.mlp.fc_2.weight": "model.layers.{}.mlp.up_proj.weight",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.down_proj.weight",
}
)
else:
raise NotImplementedError
for from_name, param in lit_weights.items():
if from_name == "lm_head.weight" and untie_weights:
continue
name_template, *ids = layer_template(from_name, num_matches=2)
param = load_param(param, from_name, None)
if from_name.endswith(".attn.qkv.weight"):
to_names = (
"model.layers.{}.self_attn.q_proj.weight".format(*ids),
"model.layers.{}.self_attn.k_proj.weight".format(*ids),
"model.layers.{}.self_attn.v_proj.weight".format(*ids),
)
params = param.split(
(
config.n_head * config.head_size,
config.n_query_groups * config.head_size,
config.n_query_groups * config.head_size,
)
)
else:
to_names = (weight_map[name_template].format(*ids),)
params = (param,)
for to_name, param in zip(to_names, params):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_gemma_2(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
untie_weights: bool = False,
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.o_proj.weight",
"transformer.h.{}.mlp.fc_1.weight": "model.layers.{}.mlp.gate_proj.weight",
"transformer.h.{}.mlp.fc_2.weight": "model.layers.{}.mlp.up_proj.weight",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.down_proj.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{}.input_layernorm.weight",
"transformer.h.{}.post_attention_norm.weight": "model.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.norm_2.weight": "model.layers.{}.pre_feedforward_layernorm.weight",
"transformer.h.{}.post_mlp_norm.weight": "model.layers.{}.post_feedforward_layernorm.weight",
"transformer.ln_f.weight": "model.norm.weight",
"lm_head.weight": "lm_head.weight",
}
for from_name, param in lit_weights.items():
if from_name == "lm_head.weight" and untie_weights:
continue
name_template, *ids = layer_template(from_name, num_matches=2)
param = load_param(param, from_name, None)
if from_name.endswith(".attn.qkv.weight"):
to_names = (
"model.layers.{}.self_attn.q_proj.weight".format(*ids),
"model.layers.{}.self_attn.k_proj.weight".format(*ids),
"model.layers.{}.self_attn.v_proj.weight".format(*ids),
)
params = param.split(
(
config.n_head * config.head_size,
config.n_query_groups * config.head_size,
config.n_query_groups * config.head_size,
)
)
else:
to_names = (weight_map[name_template].format(*ids),)
params = (param,)
for to_name, param in zip(to_names, params):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def copy_weights_phi(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{}.input_layernorm.weight",
"transformer.h.{}.norm_1.bias": "model.layers.{}.input_layernorm.bias",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.dense.weight",
"transformer.h.{}.attn.proj.bias": "model.layers.{}.self_attn.dense.bias",
"transformer.h.{}.mlp.fc.weight": "model.layers.{}.mlp.fc1.weight",
"transformer.h.{}.mlp.fc.bias": "model.layers.{}.mlp.fc1.bias",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.fc2.weight",
"transformer.h.{}.mlp.proj.bias": "model.layers.{}.mlp.fc2.bias",
"transformer.ln_f.weight": "model.final_layernorm.weight",
"transformer.ln_f.bias": "model.final_layernorm.bias",
"lm_head.weight": "lm_head.weight",
"lm_head.bias": "lm_head.bias",
}
if config.name.startswith(("Phi-3", "phi-4")):
weight_map.update(
{
"transformer.h.{}.attn.qkv.weight": "model.layers.{}.self_attn.qkv_proj.weight",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.o_proj.weight",
"transformer.h.{}.norm_2.weight": "model.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.down_proj.weight",
"transformer.ln_f.weight": "model.norm.weight",
}
)
gate_up_proj_weights = defaultdict(dict)
for from_name, param in lit_weights.items():
name_template, layer_idx = layer_template(from_name)
param = load_param(param, from_name, None)
if from_name.endswith((".attn.qkv.weight", ".attn.qkv.bias")):
if config.name.startswith("Phi-3"):
to_names = (weight_map[name_template].format(layer_idx),)
params = (param,)
else:
weight_type = from_name.split(".")[-1] # weight or bias
to_names = (
f"model.layers.{{}}.self_attn.q_proj.{weight_type}".format(layer_idx),
f"model.layers.{{}}.self_attn.k_proj.{weight_type}".format(layer_idx),
f"model.layers.{{}}.self_attn.v_proj.{weight_type}".format(layer_idx),
)
params = param.split(
(
config.n_head * config.head_size,
config.n_query_groups * config.head_size,
config.n_query_groups * config.head_size,
)
)
elif from_name.endswith((".fc_1.weight", ".fc_2.weight")):
weight = load_param(param, from_name, None)
weight_name = from_name.split(".")[-2]
gate_up_proj_weights[layer_idx][weight_name] = weight
else:
to_names = (weight_map[name_template].format(layer_idx),)
params = (param,)
for to_name, param in zip(to_names, params):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
if config.name.startswith("Phi-3"):
for layer_idx in list(gate_up_proj_weights):
fc_1_weight = gate_up_proj_weights[layer_idx]["fc_1"]
fc_2_weight = gate_up_proj_weights[layer_idx]["fc_2"]
weight = torch.concat([fc_1_weight, fc_2_weight], dim=0)
layer_name = f"model.layers.{layer_idx}.mlp.gate_up_proj.weight"
state_dict[layer_name] = weight
del gate_up_proj_weights[layer_idx]
def copy_weights_qwen_2_5(
config: Config,
state_dict: Dict[str, torch.Tensor],
lit_weights: Dict[str, Union[torch.Tensor, NotYetLoadedTensor]],
untie_weights: bool = False,
saver: Optional[incremental_save] = None,
) -> None:
weight_map = {
"transformer.wte.weight": "model.embed_tokens.weight",
"transformer.h.{}.norm_1.weight": "model.layers.{}.input_layernorm.weight",
"transformer.h.{}.norm_2.weight": "model.layers.{}.post_attention_layernorm.weight",
"transformer.h.{}.attn.proj.weight": "model.layers.{}.self_attn.o_proj.weight",
"transformer.h.{}.mlp.fc_1.weight": "model.layers.{}.mlp.gate_proj.weight",
"transformer.h.{}.mlp.fc_2.weight": "model.layers.{}.mlp.up_proj.weight",
"transformer.h.{}.mlp.proj.weight": "model.layers.{}.mlp.down_proj.weight",
"transformer.ln_f.weight": "model.norm.weight",
"lm_head.weight": "lm_head.weight",
}
for from_name, param in lit_weights.items():
if from_name == "lm_head.weight" and untie_weights:
continue
name_template, *ids = layer_template(from_name, num_matches=2)
param = load_param(param, from_name, None)
if from_name.endswith((".attn.qkv.weight", ".attn.qkv.bias")):
weight_type = from_name.split(".")[-1] # weight or bias
to_names = (
"model.layers.{}.self_attn.q_proj.{}".format(*ids, weight_type),
"model.layers.{}.self_attn.k_proj.{}".format(*ids, weight_type),
"model.layers.{}.self_attn.v_proj.{}".format(*ids, weight_type),
)
params = param.split(
(
config.n_head * config.head_size,
config.n_query_groups * config.head_size,
config.n_query_groups * config.head_size,
)
)
else:
to_names = (weight_map[name_template].format(*ids),)
params = (param,)
for to_name, param in zip(to_names, params):
if saver is not None:
param = saver.store_early(param)
state_dict[to_name] = param
def qkv_reassemble(param: Union[torch.Tensor, NotYetLoadedTensor], config: Config) -> torch.Tensor:
"""Reassemble from a normal to an interleaved placement in a QKV matrix.
[Q, Q, ..., K, K, ..., V, V, ...] --> [Q, K, V, Q, K, V, ...]
"""
q, k, v = param.split(
(
config.n_head * config.head_size,
config.n_query_groups * config.head_size,
config.n_query_groups * config.head_size,
)
)
qs = q.split(config.n_head // config.n_query_groups * config.head_size)
ks = k.split(config.head_size)
vs = v.split(config.head_size)
interleaved = [t for group in zip(qs, ks, vs) for t in group]
return torch.cat(interleaved)
def check_conversion_supported(lit_weights: Dict[str, torch.Tensor]) -> None:
if any("lora" in wn for wn in lit_weights):
raise ValueError("Checkpoints with LoRA weights cannot be converted. Call `scripts/merge_lora.py` first.")
if any("adapter" in wn or "gating_factor" in wn for wn in lit_weights):
raise NotImplementedError("Converting adapter models is not supported.")
@torch.inference_mode()
def convert_lit_checkpoint(checkpoint_dir: Path, output_dir: Path) -> None:
"""Convert a LitGPT trained checkpoint into a Hugging Face Transformers checkpoint."""
checkpoint_dir = extend_checkpoint_dir(checkpoint_dir)
pprint(locals())
config = Config.from_file(checkpoint_dir / "model_config.yaml")
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / "model.pth"
if "falcon" in config.name:
copy_fn = partial(copy_weights_falcon, config)
elif config.name.startswith("Gemma-2"):
copy_fn = partial(copy_weights_gemma_2, config)
elif config.name.lower().startswith("phi"):
copy_fn = partial(copy_weights_phi, config)
elif config.name.lower().startswith(("qwen2.5","qwq")):
copy_fn = partial(copy_weights_qwen_2_5, config)
elif config.mlp_class_name in ("LLaMAMLP", "GemmaMLP", "LLaMAMoE"):
untie_weights = "Gemma" in config.name
copy_fn = partial(copy_weights_llama, config, untie_weights=untie_weights)
else:
copy_fn = partial(copy_weights_gpt_neox, config)
# initialize a new empty state dict to hold our new weights
sd = {}
with incremental_save(output_path) as saver:
lit_weights = lazy_load(checkpoint_dir / "lit_model.pth")
lit_weights = lit_weights.get("model", lit_weights)
check_conversion_supported(lit_weights)
copy_fn(sd, lit_weights, saver=saver)
gc.collect()
saver.save(sd)