forked from actionwords/actionwords
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
350 lines (269 loc) · 11.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import sys
import traceback
import pickle
import argparse
import collections
from keras import metrics
import random
import tensorflow as tf
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
seed = 1337
random.seed(seed)
np.random.seed(seed)
tf.set_random_seed(seed)
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, wait, as_completed
import multiprocessing
from itertools import product
from multiprocessing import Pool
from timeit import default_timer as timer
from model import create_model
from myutils import prep, drop, statusout, batch_gen, seq2sent, index2word, init_tf
import keras
import keras.backend as K
from custom.graphlayers import OurCustomGraphLayer
from keras_self_attention import SeqSelfAttention
def gendescr_astflat(model, data, batchsize, config):
smls = list(zip(*data.values()))
coms = np.zeros(batchsize)
smls = np.array(smls)
smls = np.squeeze(smls, axis=0)
results = model.predict([smls], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_astflat_tdat(model, data, batchsize, config):
tdats, smls = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros((len(smls)))
smls = np.array(smls)
results = model.predict([tdats, smls], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_datsonly(model, data, batchsize, config):
tdats = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros(batchsize)
tdats = np.squeeze(tdats, axis=0)
results = model.predict([tdats], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_ast_threed(model, data, batchsize, config):
tdats, sdats, smls = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros((len(smls)))
sdats = np.array(sdats)
smls = np.array(smls)
results = model.predict([tdats, sdats, smls], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_threed(model, data, batchsize, config):
tdats, sdats = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros((len(smls)))
sdats = np.array(sdats)
results = model.predict([tdats, sdats], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_graphast(model, data, batchsize, config):
tdats, wsmlnodes, wsmledges = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros(batchsize)
wsmlnodes = np.array(wsmlnodes)
wsmledges = np.array(wsmledges)
results = model.predict([tdats, wsmlnodes, wsmledges], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_graphast_threed(model, data, batchsize, config):
tdats, sdats, wsmlnodes, wsmledges = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros(batchsize)
sdats = np.array(sdats)
wsmlnodes = np.array(wsmlnodes)
wsmledges = np.array(wsmledges)
results = model.predict([tdats, sdats, wsmlnodes, wsmledges], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def gendescr_pathast_threed(model, data, batchsize, config):
tdats, sdats, wsmlpaths = list(zip(*data.values()))
tdats = np.array(tdats)
coms = np.zeros(batchsize)
sdats = np.array(sdats)
wsmlpaths = np.array(wsmlpaths)
if (config['use_sdats']):
results = model.predict([tdats, sdats, wsmlpaths], batch_size=batchsize)
else:
results = model.predict([tdats, wsmlpaths], batch_size=batchsize)
for c, s in enumerate(results):
coms[c] = np.argmax(s)
final_data = {}
for fid, com in zip(data.keys(), coms):
final_data[fid] = int(com)
return final_data
def load_model_from_weights(modelpath, modeltype, datvocabsize, comvocabsize, smlvocabsize, datlen, comlen, smllen):
config = dict()
config['datvocabsize'] = datvocabsize
config['comvocabsize'] = comvocabsize
config['datlen'] = datlen # length of the data
config['comlen'] = comlen # comlen sent us in workunits
config['smlvocabsize'] = smlvocabsize
config['smllen'] = smllen
model = create_model(modeltype, config)
model.load_weights(modelpath)
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('modelfile', type=str, default=None)
parser.add_argument('--num-procs', dest='numprocs', type=int, default='4')
parser.add_argument('--gpu', dest='gpu', type=str, default='')
parser.add_argument('--data', dest='dataprep', type=str, default='/nfs/projects/firstwords/data/standard')
parser.add_argument('--outdir', dest='outdir', type=str, default='/nfs/projects/firstwords/data/outdir')
parser.add_argument('--batch-size', dest='batchsize', type=int, default=200)
parser.add_argument('--num-inputs', dest='numinputs', type=int, default=3)
parser.add_argument('--model-type', dest='modeltype', type=str, default=None)
parser.add_argument('--outfile', dest='outfile', type=str, default=None)
parser.add_argument('--zero-dats', dest='zerodats', type=str, default='no')
parser.add_argument('--dtype', dest='dtype', type=str, default='float32')
parser.add_argument('--tf-loglevel', dest='tf_loglevel', type=str, default='3')
parser.add_argument('--testval', dest='testval', type=str, default='test')
parser.add_argument('--datfile', dest='datfile', type=str, default='dataset.pkl')
parser.add_argument('--fwfile', dest='fwfile', type=str, default='javafirstwords_getset.pkl')
args = parser.parse_args()
outdir = args.outdir
dataprep = args.dataprep
modelfile = args.modelfile
numprocs = args.numprocs
gpu = args.gpu
batchsize = args.batchsize
num_inputs = args.numinputs
modeltype = args.modeltype
outfile = args.outfile
zerodats = args.zerodats
testval = args.testval
datfile = args.datfile
fwfile = args.fwfile
if outfile is None:
outfile = modelfile.split('/')[-1]
K.set_floatx(args.dtype)
os.environ['CUDA_VISIBLE_DEVICES'] = gpu
os.environ['TF_CPP_MIN_LOG_LEVEL'] = args.tf_loglevel
sys.path.append(dataprep)
import tokenizer
prep('loading tokenizers... ')
tdatstok = pickle.load(open('%s/tdats.tok' % (dataprep), 'rb'), encoding='UTF-8')
comstok = pickle.load(open('%s/coms.tok' % (dataprep), 'rb'), encoding='UTF-8')
smltok = pickle.load(open('%s/smls.tok' % (dataprep), 'rb'), encoding='UTF-8')
drop()
prep('loading firstwords... ')
firstwords = pickle.load(open('/nfs/projects/firstwords/data/preprocessing/firstwords/%s' % (fwfile), 'rb'))
drop()
prep('loading sequences... ')
seqdata = pickle.load(open('%s/%s' % (dataprep, datfile), 'rb'))
drop()
print(zerodats)
if zerodats == 'yes':
zerodats = True
else:
zerodats = False
print(zerodats)
if zerodats:
v = np.zeros(100)
for key, val in seqdata['dttrain'].items():
seqdata['dttrain'][key] = v
for key, val in seqdata['dtval'].items():
seqdata['dtval'][key] = v
for key, val in seqdata['dttest'].items():
seqdata['dttest'][key] = v
allfids = list(seqdata['c'+testval].keys())
datvocabsize = tdatstok.vocab_size
comvocabsize = comstok.vocab_size
smlvocabsize = smltok.vocab_size
#datlen = len(seqdata['dttest'][list(seqdata['dttest'].keys())[0]])
comlen = len(seqdata['c'+testval][list(seqdata['c'+testval].keys())[0]])
#smllen = len(seqdata['stest'][list(seqdata['stest'].keys())[0]])
prep('loading config... ')
(modeltype, mid, timestart) = modelfile.split('_')
(timestart, ext) = timestart.split('.')
modeltype = modeltype.split('/')[-1]
config = pickle.load(open(outdir+'/histories/'+modeltype+'_conf_'+timestart+'.pkl', 'rb'))
num_inputs = config['num_input']
drop()
prep('loading model... ')
model = keras.models.load_model(modelfile, custom_objects={"tf":tf, "keras":keras, "OurCustomGraphLayer":OurCustomGraphLayer, "SeqSelfAttention":SeqSelfAttention})
print(model.summary())
drop()
batch_sets = [allfids[i:i+batchsize] for i in range(0, len(allfids), batchsize)]
refs = list()
preds = list()
predf = open('{}/predictions/{}_{}_{}.tsv'.format(outdir, modeltype, mid, timestart), 'w')
prep("computing predictions...\n")
for c, fid_set in enumerate(batch_sets):
st = timer()
bg = batch_gen(seqdata, firstwords, testval, config, training=False)
batch = bg.make_batch(fid_set)
if config['batch_maker'] == 'seqsonly':
batch_results = gendescr_astflat(model, batch, batchsize, config)
elif config['batch_maker'] == 'ast':
batch_results = gendescr_astflat_tdat(model, batch, batchsize, config)
elif config['batch_maker'] == 'datsonly':
batch_results = gendescr_datsonly(model, batch, batchsize, config)
elif config['batch_maker'] == 'ast_threed':
batch_results = gendescr_ast_threed(model, batch, batchsize, config)
elif config['batch_maker'] == 'threed':
batch_results = gendescr_threed(model, batch, bathcsize, config)
elif config['batch_maker'] == 'graphast':
batch_results = gendescr_graphast(model, batch, batchsize, config)
elif config['batch_maker'] == 'graphast_threed':
batch_results = gendescr_graphast_threed(model, batch, batchsize, config)
elif config['batch_maker'] == 'pathast_threed':
batch_results = gendescr_pathast_threed(model, batch, batchsize, config)
else:
print('error: invalid batch maker')
sys.exit()
for key, val in batch_results.items():
ref = firstwords['testfw'][key] # key is fid
refs.append(ref)
preds.append(val)
predf.write('{}\t{}\t{}\n'.format(key, val, ref))
end = timer ()
print("{} processed, {} per second this batch".format((c+1)*batchsize, batchsize/(end-st)))
drop()
predf.close()
cmlbls = list(firstwords['fwmap'].keys())
cm = confusion_matrix(refs, preds, labels=range(len(cmlbls)))
outstr = ""
row_format = "{:>8}" * (len(cmlbls) + 1)
outstr += row_format.format("", *cmlbls) + "\n"
for team, row in zip(cmlbls, cm):
outstr += row_format.format(team, *row) + "\n"
outstr += '\n'
outstr += classification_report(refs, preds, target_names=cmlbls, labels=range(len(cmlbls)))
print(outstr)