-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeamCarving.py
119 lines (87 loc) · 2.83 KB
/
SeamCarving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
from tqdm import trange
import numpy as np
from imageio import imread, imwrite
from scipy.ndimage.filters import convolve
def calc_energy(img):
filter_du = np.array([
[1.0, 2.0, 1.0],
[0.0, 0.0, 0.0],
[-1.0, -2.0, -1.0],
])
# 这会将它从2D滤波转换为3D滤波器
# 为每个通道:R,G,B复制相同的滤波器
filter_du = np.stack([filter_du] * 3, axis=2)
filter_dv = np.array([
[1.0, 0.0, -1.0],
[2.0, 0.0, -2.0],
[1.0, 0.0, -1.0],
])
# 这会将它从2D滤波转换为3D滤波器
# 为每个通道:R,G,B复制相同的滤波器
filter_dv = np.stack([filter_dv] * 3, axis=2)
img = img.astype('float32')
convolved = np.absolute(convolve(img, filter_du)) + \
np.absolute(convolve(img, filter_dv))
# 我们计算红,绿,蓝通道中的能量值之和
energy_map = convolved.sum(axis=2)
return energy_map
def crop_c(img, scale_c):
r, c, _ = img.shape
new_c = int(scale_c * c)
for i in trange(c - new_c):
img = carve_column(img)
return img
def crop_r(img, scale_r):
img = np.rot90(img, 1, (0, 1))
img = crop_c(img, scale_r)
img = np.rot90(img, 3, (0, 1))
return img
def carve_column(img):
r, c, _ = img.shape
M, backtrack = minimum_seam(img)
mask = np.ones((r, c), dtype=np.bool)
j = np.argmin(M[-1])
for i in reversed(range(r)):
mask[i, j] = False
j = backtrack[i, j]
mask = np.stack([mask] * 3, axis=2)
img = img[mask].reshape((r, c - 1, 3))
return img
def minimum_seam(img):
r, c, _ = img.shape
energy_map = calc_energy(img)
M = energy_map.copy()
backtrack = np.zeros_like(M, dtype=np.int)
for i in range(1, r):
for j in range(0, c):
# 处理图像的左侧边缘,确保我们不会索引-1
if j == 0:
idx = np.argmin(M[i-1, j:j + 2])
backtrack[i, j] = idx + j
min_energy = M[i-1, idx + j]
else:
idx = np.argmin(M[i - 1, j - 1:j + 2])
backtrack[i, j] = idx + j - 1
min_energy = M[i - 1, idx + j - 1]
M[i, j] += min_energy
return M, backtrack
def main():
if len(sys.argv) != 5:
print('usage: carver.py <r/c> <scale> <image_in> <image_out>', file=sys.stderr)
sys.exit(1)
which_axis = sys.argv[1]
scale = float(sys.argv[2])
in_filename = sys.argv[3]
out_filename = sys.argv[4]
img = imread(in_filename)
if which_axis == 'r':
out = crop_r(img, scale)
elif which_axis == 'c':
out = crop_c(img, scale)
else:
print('usage: carver.py <r/c> <scale> <image_in> <image_out>', file=sys.stderr)
sys.exit(1)
imwrite(out_filename, out)
if __name__ == '__main__':
main()