-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model.py
135 lines (98 loc) · 4.94 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import tensorflow as tf
import random
sess = tf.Session()
def loadDataSet():
# load the dataset
data = np.load('data_set.npz', encoding='latin1')
training_data = data['training_data']
#print(len(training_data))
validation_data = data['validation_data']
test_data = data['testing_data']
# format the dataset into array and output labels in one hot format
training_inputs = [np.reshape(training_data[x]['img'],(1,1024)) for x in range(len(training_data))]
training_results = [vectorized_result(training_data[x]['label']) for x in range(len(training_data))]
training_data = {'training_inputs': training_inputs, 'training_results': training_results}
validation_inputs = [np.reshape(validation_data[x]['img'],(1,1024)) for x in range(len(validation_data))]
validation_results = [vectorized_result(validation_data[x]['label']) for x in range(len(validation_data))]
validation_data = {'validation_inputs': validation_inputs, 'validation_results': validation_results}
test_inputs = [np.reshape(test_data[x]['img'],(1,1024)) for x in range(len(test_data))]
test_results = [vectorized_result(test_data[x]['label']) for x in range(len(test_data))]
test_data = {'test_inputs': test_inputs, 'test_results': test_results}
print(len(test_inputs))
return [training_data, test_data, validation_data]
def vectorized_result(y):
e = np.zeros((1,62))
e[0][y] = 1.0
return e
training_data, test_data,validation_data =loadDataSet()
n_hidden_1 = 2048
n_hidden_2 = 2048
n_hidden_3 = 2048
n_hidden_4 = 2048
n_classes = 62
batch_size = 10
x = tf.placeholder(tf.float32, [None, 1024])
y = tf.placeholder(tf.float32, [None, n_classes])
def neural_network_model(data):
hidden_layer_1 = {
'weights': tf.Variable(tf.random_normal([1024, n_hidden_1])),
'biases': tf.Variable(tf.random_normal([n_hidden_1]))
}
hidden_layer_2 = {
'weights': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'biases': tf.Variable(tf.random_normal([n_hidden_2]))
}
hidden_layer_3 = {
'weights': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'biases': tf.Variable(tf.random_normal([n_hidden_3]))
}
hidden_layer_4 = {
'weights': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
'biases': tf.Variable(tf.random_normal([n_hidden_4]))
}
output_layer = {
'weights': tf.Variable(tf.random_normal([n_hidden_4, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))
}
layer_1 = tf.add(tf.matmul(data, hidden_layer_1['weights']), hidden_layer_1['biases'])
tf.nn.relu(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, hidden_layer_2['weights']), hidden_layer_2['biases'])
tf.nn.relu(layer_2)
layer_3 = tf.add(tf.matmul(layer_2, hidden_layer_3['weights']), hidden_layer_3['biases'])
tf.nn.relu(layer_3)
layer_4 = tf.add(tf.matmul(layer_3, hidden_layer_4['weights']), hidden_layer_4['biases'])
tf.nn.relu(layer_4)
output = tf.add(tf.matmul(layer_4, output_layer['weights']), output_layer['biases'])
return output
def train_neural_network(x):
prediction = neural_network_model(x)
# print("Pred :",prediction)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer(0.5).minimize(cost)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
# print("Correct:",correct)
# print( tf.argmax(prediction, 1)," ",tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
saver = tf.train.Saver()
n_epochs = 30
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
epoch_loss = 0
total_acc = 0
total_batches = len(training_data['training_inputs']) // batch_size
for i in range(total_batches):
epoch_x = np.squeeze(np.array(training_data['training_inputs'][i * batch_size:(i + 1) * (batch_size)]))
epoch_y = np.squeeze(np.array(training_data['training_results'][i * batch_size:(i + 1) * (batch_size)]))
_, c, acc = sess.run([optimizer, cost, accuracy], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
total_acc += acc
save_path = saver.save(sess, "./biases_weights.ckpt")
print('Epoch ', epoch, ' completed out of ', n_epochs, 'loss : ', epoch_loss, total_acc / total_batches)
print('optimization finished')
test_x = np.squeeze(np.array(validation_data['validation_inputs']))
test_y = np.squeeze(np.array(validation_data['validation_results']))
acc = sess.run(accuracy, feed_dict={x: test_x, y: test_y})
print("Validation Accuracy",acc)
train_neural_network(x)