You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
代码:
from pyabsa import DatasetItem, ModelSaveOption, DeviceTypeOption
import warnings
忽略警告信息
warnings.filterwarnings("ignore")
from pyabsa.framework.trainer_class.trainer_template import Trainer
from pyabsa.tasks.AspectTermExtraction.configuration.atepc_configuration import ATEPCConfigManager
from autocuda import auto_cuda
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
import numpy as np
config.show_metric=True, #启用这个可以展示更多指标?
config.output_dim=3, #据说这个是方面分类的个数?
config.cross_validate_fold = 5 # 5折交叉验证
config.max_seq_length=512
config.batch_size = 8
config.learning_rate = 1e-5 # 降低学习率(当前为2e-5)
config.l2reg = 1e-4 # 增强L2正则化(当前为1e-5)
config.early_stop_by = "ate_f1" # 默认可能监控APC_ACC,改为监控ATE_F1
config.max_grad_norm = 1.0 # 防止梯度爆炸
config.use_crf = True # 改善序列标注的连贯性
config.patience = 2
config.log_step = -1
config.seed = [1]
config.verbose = False # If verbose == True, PyABSA will output the model strcture and seversal processed data examples
config.notice = (
"This is an training example for aspect term extraction" # for memos usage
)
config.checkpoint_save_mode = ModelSaveOption.SAVE_FULL_MODEL # 保存完整模型
trainer = ATEPC.ATEPCTrainer(
config=config,
dataset=dataset,
auto_device=DeviceTypeOption.AUTO, # use cuda if available
checkpoint_save_mode=ModelSaveOption.SAVE_FULL_MODEL, # save state dict only instead of the whole model
load_aug=False, # there are some augmentation dataset for integrated datasets, you use them by setting load_aug=True to improve performance
)
代码:
from pyabsa import DatasetItem, ModelSaveOption, DeviceTypeOption
import warnings
忽略警告信息
warnings.filterwarnings("ignore")
from pyabsa.framework.trainer_class.trainer_template import Trainer
from pyabsa.tasks.AspectTermExtraction.configuration.atepc_configuration import ATEPCConfigManager
from autocuda import auto_cuda
config = ATEPCConfigManager.get_atepc_config_english()
dataset = '137.all'
dataset = '100.CustomDataset'
添加sklearn的评估指标
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
import numpy as np
config.show_metric=True, #启用这个可以展示更多指标?
config.output_dim=3, #据说这个是方面分类的个数?
config.cross_validate_fold = 5 # 5折交叉验证
config.max_seq_length=512
config.batch_size = 8
config.learning_rate = 1e-5 # 降低学习率(当前为2e-5)
config.l2reg = 1e-4 # 增强L2正则化(当前为1e-5)
config.early_stop_by = "ate_f1" # 默认可能监控APC_ACC,改为监控ATE_F1
config.max_grad_norm = 1.0 # 防止梯度爆炸
config.use_crf = True # 改善序列标注的连贯性
config.patience = 2
config.log_step = -1
config.seed = [1]
config.verbose = False # If verbose == True, PyABSA will output the model strcture and seversal processed data examples
config.notice = (
"This is an training example for aspect term extraction" # for memos usage
)
config.checkpoint_save_mode = ModelSaveOption.SAVE_FULL_MODEL # 保存完整模型
trainer = ATEPC.ATEPCTrainer(
config=config,
dataset=dataset,
auto_device=DeviceTypeOption.AUTO, # use cuda if available
checkpoint_save_mode=ModelSaveOption.SAVE_FULL_MODEL, # save state dict only instead of the whole model
load_aug=False, # there are some augmentation dataset for integrated datasets, you use them by setting load_aug=True to improve performance
)
问题:
Epoch: 1 | Smooth Loss: 0.7048: 100%|██████████████████████████████████████████████▉| 612/613 [05:39<00:00, 1.78it/s]
根据教程,每个Epoch都应该显示Epoch: 0| loss_apc:0.0099 | loss_ate:0.0139 |: 100%|██████████| 226/226 [01:02<00:00, 3.59it/s, APC_ACC: 85.96(max:87.21) | APC_F1: 78.04(max:81.65) | ATE_F1: 82.87(max:84.58)]
但是这里APC_F1和ATE_F1都没有显示出来,如图:
您的解答将对我非常有帮助,提前感谢!
The text was updated successfully, but these errors were encountered: