-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheader.py
78 lines (57 loc) · 1.57 KB
/
header.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
USE_PYTORCH = True
from enum import Enum
import scipy
from scipy import signal
import pywt
import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
## import ray
import dask
import dask.dataframe as dd
from dask.diagnostics import ProgressBar
from dask.distributed import get_worker
from dask.distributed import Client, LocalCluster
ProgressBar().register()
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import animation
from pyts.image import GramianAngularField, MarkovTransitionField
from sklearn import preprocessing
if( not USE_PYTORCH ):
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import initializers
import json
import pickle
import os
import gc
import winsound
from datetime import datetime, timedelta
import time
import re
import math
from joblib import Parallel, delayed, parallel_backend
import multiprocessing as mp
import itertools
from functools import partial
from collections import OrderedDict
# from sqlalchemy import create_engine
# import pyodbc
# import urllib
# import turbodbc
from IPython.display import clear_output
######## Preprocessor ########
# Preprocessor
######## Trainer ########
# Feature Chunk Names:
# Model Definition
MODEL_DIR = "models/"
FINAL_MODEL_PATH = MODEL_DIR + "model_final.h5"
MIDDLE_MODEL_PATH = MODEL_DIR + "model_middle.h5"
TENSORBOARD_LOG_DIR = "logs\\" + datetime.now().strftime("%Y%m%d-%H%M%S")
# Model Fitting
# BATCH_SIZE = 4 # Ideal: 256?
# TOTAL_EPOCHS = 256 # Ideal: 128
#MAIN_IP_ADRESS = "192.168.1.1"